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Stabilizing a Chain of Integrators Using Multiple Delays

Silviu-Iulian Niculescu and Wim Michiels

Abstract—This note addresses the output feedback stabilization problem
of a chain of integrators using multiple delays. We shall prove that either
distinct delays or a proportional+delay compensator with 1 distinct
delays are sufficient to stabilize a chain including integrators.We present
two different approaches. Both are constructive and rely on frequency-do-
main techniques: on a derivative feedback approximation idea, and a pole
placement idea, respectively. An illustrative example (triple integrator) is
presented.

Index Terms—Delay, integrator, interpolation, pole placement.

I. INTRODUCTION

In the sequel, we address the following problem.
Problem 1: Find (necessary and/or sufficient) conditions on the

(2m + 1)-tuple (m; ki; �i), i = 1;m such that the (output feedback)
control law defined by the chain of m distinct delay blocks (ki; �i)

u(t) = �

m

i=1

kiy(t� �i) (1)

asymptotically stabilizes the chain of n integrators: Hyu(�) = 1=�n.
When one of the delays is equal to zero, we call (1) a propor-

tional+delay compensator.
The main interest in analyzing control laws of the form (1) lies in the

simplicity of the controller, as well as in its practical implementation
facility.1 This problem is strongly related to the increasing interest of
controlling congestion phenomena in high-speed networks using a fluid
approximation [16]. Indeed, delay phenomena always appear in data
transfer for a given (source, destination) pair through some network
channels, and, furthermore, as seen in [8], the integrator is the easiest
way to represent a bottleneck in the path between the corresponding
source and destination.

Some simple computations prove that the single integrator can be
easily stabilized by a single delay (see, for instance, [13] and the
references therein). Indeed, a positive gain guarantees the closed-loop
stability of the system free of delay, and, by continuity, there exists
a (sufficiently small) delay in the output such that the closed-loop
stability is still preserved. The situation is completely different for
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1Furthermore, if n > 1, it is well known that there does not exist any (static
output feedback) stabilizing control law (free of delays) of the form u(t) =
�ky(t).

a double integrator: one delay is not sufficient to stabilize it, since
the system free of delay is an oscillator, and it becomes unstable
for any positive and sufficiently small delay. However, the use of
two appropriate delays (not necessarily rationally independent) can
ensure the closed-loop stability [3] (see also [14] for a different
stability argument). The result is still true if one of the delays is
equal to 0 (see, e.g., [1] and [13]).

In this note, the ideas previously mentioned are generalized to the
chain including n integrators. First we devote a brief discussion to the
number of delay blocks, necessary for the stabilization of the chain.
We develop arguments, which lead us to a conjecture, stating that at
least m = n terms in the control law (1) are necessary for stabiliza-
tion. Then, we will prove that either n distinct delays in the control
law or a proportional+delay compensator with n � 1 distinct delays
are sufficient. We use two different approaches, which are both con-
structive. The first approach is based on a derivative feedback idea.
More precisely, starting from a stabilizing control law without delays
but using output derivatives, we show that stability is preserved when
the derivatives are closely approximated with (past) measurements of
the output. Although the proposed approach is similar to the one pro-
posed by Kokame and Mori in [7] (see also the references therein) for
stabilizing systems without delays, the technique used here is slightly
different using an interpolation based method. The second approach
is based on the pole placement of the n rightmost roots of the corre-
sponding characteristic equation using low-gain control laws, inspired
by the recent work on constrained linear control of time-delay systems
[9], [10].

Although the problem of stabilizing a chain of integrators using
bounded input with [9], [10] or without [19] delays was already treated
in the literature, the problem stated above was never considered in the
multiple delays framework, where the delays are seen and interpreted
as design parameters. Some particular cases (single integrator, double
integrator with one or two delays) have already been considered [3],
[10], [13], [14], but without any attempt to work out the general case.

It is important to note that the use of delays as control parameters
is not new. In this sense, see the work of Pyragas [15] on stabilizing
unstable periodic orbits in chaotic systems by inducing delays in the
control law (the delay chosen is equal to the corresponding period), or
the work of Yamanaka and Shimemura [20], where a controller of the
form (1) was already encountered, but for a different control problem.
More precisely, [20] proved that the minimum variance (minimized
L2-norm) of some internal model control (IMC) scheme can be made
arbitrarily small for a minimum-phase plant by increasing the number
of delays in the control law.

The note is organized as follows. Iin Section II, some properties
(scaling, stabilizability) of (delayed) output feedback are outlined,
Section III is devoted to the main results, as well as to various
discussions and interpretations. Note, however, that we are not
interested in discussing other performances or limitations of the
control scheme, excepting the asymptotic stability in closed-loop.
An illustrative example (triple integrator) is presented in Section IV,
and some concluding remarks end the note. The notations are standard.

II. PROPERTIES

We discuss some theoretical properties of control laws of the form
(1).

A. Scaling

Auseful result in the rest of the note is the following scaling property,
which indicates a natural tradeoff between “gain” and “delay” in the
controller construction.
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Property 1: The control law

u(t) = �

m

j=1

kjy(t� �j) (2)

is asymptotically stabilizing if and only if

u(t) = �

m

j=1

kj
�n

y(t� ��j); � > 0 (3)

is asymptotically stabilizing.
Proof: The transformation from (2) to (3) simply involves a

scaling of the closed-loop eigenvalues by 1=�.
Note that an analogous scaling property was the basis for the

construction of state feedback controllers in the presence of input
constraints in [10] and also played a crucial role in the study of
the so-called peaking phenomena, see, e.g., [17] and [18] (and the
references therein).

B. Stabilizability

An important issue in studying the stabilizability with control laws
of the form (1) concerns the minimal number of output measurements,
needed for the construction of a stabilizing feedback law,m. In the next
section we show thatm = n is sufficient. The question rises whether a
control law withm < n output measurements could also work. For the
special cases of the single and the double integrator, which have already
been treated in the literature, the answer is negative, as discussed in the
Introduction. Although a complete proof is missing, we believe that this
result can be generalized to the following.

Conjecture 1: A chain of n integrators (n � 2) can neither be sta-
bilized with a chain of less than n delay blocks, nor with a propor-
tional+delay compensator with less than n�1 delays. The fact that the
uncontrolled system has n roots in the closed right half plane could be
a motivation for the need of n controller parameters. On one hand, this
argument is not strong because the conjecture concerns a stabilizability
problem, rather than a controllability problem of the n rightmost eigen-
values, but on the other hand, in the state feedback case and without
delay, also n controller parameters are necessary for asymptotic stabi-
lization. A much stronger argument will be developed as a side-result
in the next section (Remark 2).

We conclude with the special case of a triple integrator with a P+
delay controller.

Proposition 1: The chain of three integrators can never by stabilized
by a proportional+delay controller, including only one delay block.

Proof: Assume that the controller has the form: u(t) =
�k2y(t)+k1y(t� � ). Without any loss of generality, assume ki > 0,
i = 1; 2. Then, the corresponding characteristic equation becomes

�3 + k2 � k1e
��� = 0: (4)

The roots on the imaginary axis�j!, ! > 0, if any, should satisfy the
constraints:

k2 � k1 cos(!�) = 0

!3 � k1 sin(!�) = 0:
(5)

It is easy to see that if k2 > k1, then (5) will never have solutions.
Thus, the considered controller u(t) = �k2y(t)+k1y(t�� ) does not
change the system’s behavior for any positive delay value, that means
the delay-independent instability of the closed-loop system.

Assume that k1 > k2. Then, (5) has the solution j! = j(k21�k
2
2)

1=6

on the imaginary axis, and the corresponding delay value is

� =
1

(k21 � k22)
arcsin 1�

k22
k21

: (6)

Assume � a free parameter of the system, and we shall analyze the be-
havior of the roots with respect to � . In this sense, we need to compute
d�=d� in (4), which leads to

d�

d�

�1

= �
3�

k2 + �3
�

�

�
: (7)

If we evaluate this derivative on the imaginary axis, and we take only
the real part, one gets

Re
d�

d�

�1

s=j!

= +
3!4

k21
(8)

quantity which is always positive. Based on [4], [13], the sign of (8)
gives the crossing sense of the roots: positive corresponds to instability
crossing, and negative to stability, respectively.

Note that the same conclusion holds if we assume that k1 is negative
and/or if k2 is negative.

III. STABILIZATION APPROACHES

In this section, we show that the multiple integrator can always be
stabilized with a chain of n delay blocks or with a proportional+delay
controller with (n�1) delays. Therefore, we explicitly construct stabi-
lizing control laws, using two different approaches. The first approach,
inspired by [7], consists of approximating output derivatives with (de-
layed) output measurements. This initially leads to control laws with
small delays, but by Property 1 control laws with arbitrary delays can
be constructed also (with a “tradeoff” on the “distance” to the imagi-
nary axis). The second approach, inspired by [9] and [10], consists of
a placement of the n dominant closed-loop eigenvalues by means of
low-gain control laws.

A. Control Laws Based on Numerical Differentiation With Backward
Differences

The system y(n)(t) = u(t) can be stabilized with the feedback law

u(t) = �q0 y(t)� q1 y
0(t)� . . .� qn�1 y

(n�1)(t) (9)

where the polynomial q(�) = �n+ n�1
k=0 qk�

k is Hurwitz. The latter
implies that qk > 0, 8k = 1; n. Hence, all the derivatives of the output,
up to order (n� 1), are needed in the control law.

The key idea in the controller construction consists of approximating
the output derivatives in (9) with (delayed) output measurements. For
instance, we have

y0(t) �
y(t)� y(t� �)

�
(10)

for small �, which corresponds to an approximation

� �
1� e���

�

in the frequency domain. Note that the right-hand side of (10) is the
derivative of the linear approximation of y through the points (t; y(t))
and (t� �; y(t� �)). We now outline how this idea can be generalized
to approximate higher order derivatives of y also.

Choose a set of n delays satisfying

0 � �1 < �2 < � � � < �n:

We may approximate the output y(t) around any time t = t0 with the
polynomial

yp(t) = c0 + c1(t� t0) + c2(t� t0)
2 + � � �+ cn�1(t� t0)

n�1
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which interpolates y(t) at the n past instants t0���1; . . . ; t0���n, i.e.,

yp(t0 � ��i) = y(t0 � ��i); i = 1; n: (11)

Here, � > 0 is a small scaling parameter. Since the Vandermonde
matrix

T (�)
�
=

1 �1 � 21 � � � �n�1
1

...
...

1 �n � 2n � � � �n�1
n

(12)

is invertible when the delays �i are different, (11) can be written in
matrix form as

c0
c1
...

cn�1

=

1
1

(��)

. . .
1

(��)

T (�)�1

y(t0 � ��1)

y(t0 � ��2)
...

y(t0 � ��n)
(13)

and we may approximate

y(i)(t0) � y(i)p (t0) = i! ci 8i = 1; n: (14)

This way, the control law (9) at t = t0 can be approximated with

u(t0) = �q0 yp(t0)� q1 y
0

p(t0)� � � � � qn�1 y
(n�1)
p (t0):

Substituting (13) and (14) into this expression, and applying the same
principle for all t0 > 0 leads to the control law

u(t) = � q0
1

(��)
q1

2!

(��)2
q2 � � �

(n� 1)!

(��)n�1
qn�1

�T (�)�1

y(t� ��1)
...

y(t� ��n)

: (15)

When � ! 0+ the approximation of (9) becomes better and we have
the following result.

Proposition 2: Assume that the polynomial q(�)
�
= �n +

qn�1�
n�1 + . . . + q0 is Hurwitz. Assume further that 0 � �1 <

�2 < � � � < �n and let T (�) be defined by (12). Then, the control
law (15) achieves asymptotic stability for small values of �. Moreover,
as � ! 0+, the n rightmost eigenvalues of the closed-loop system
converge to the n zeros of q(�).

Proof: With the control law (9), the characteristic equation of the
closed-loop system is given by q(�) = 0, while the control law (15)
yields q�(�) = 0, where

q�(�) = �n + q0
1

(��)
q1

2!

(��)2
q2 . . .

(n� 1)!

(��)n�1
qn�1

�T (�)�1

e��� �

...
e��� �

: (16)

We first establish a relation between q(�) and q�(�) as �! 0+. There-
fore, consider an arbitrary � 2 . Using a Taylor expansion. we have

e��� � = 1 +
(���i�)

1!
+ . . .

+
(���i�)

n�1

(n� 1)!
+O ((��)n) ; i = 1; n

which can be written as

e��� �

e��� �

...
e��� �

= T (�)

1
(���)
1!

...
(���)
(n�1)!

+

O ((��)n)

O ((��)n)
...

O ((��))n

: (17)

Substituting (17) into (16) leads to

q�(�) = q(�) +O(��n): (18)

Define a compact subset S of the complex plane, which contains
all the zeros of q(s). From the expression (18) it follows that the an-
alytic function q�(�) uniformly converges to q(�) on S as � ! 0+.
Therefore, both functions have the same number of zeros in S when �
is sufficiently small and moreover, as �! 0+, the n zeros of q�(�) in
S converge to n corresponding zeros of q(�). These statements follow
from a slight modification of [11, Lemma A1].

The proof is complete when we also show that in any right half plane
q�(�) has at most n zeros, when � is sufficiently small. This follows
from the scaling Property 1: The condition q�(�) = 0 is equivalent
with

��n + q0�
n �n�1

(1)
q1

2!�n�2

(�1)2
q2 � � �

(n� 1)!�

(�1)n�1
qn�1 �

T (�)�1

e�� ��

...
e�� ��

= 0

where �� = ��. This equation can be interpreted as the characteristic
equation of a feedback controlled multiple integrator with fixed feed-
back delays, where the gain can be made arbitrarily small. As proven
in [10], n eigenvalues converges to zero as the gain tends to zero, while
the real parts of the other eigenvalues move off to minus infinity. This
implies that for any r 2 , q�(�) has as most n zeros in the half plane
<(��) � r or, equivalently, in <(�) � r=�, provided � is sufficiently
small.
Remark 1: When the complex variable � in the characteristic equa-

tion of the closed-loop system with control law (9) is formally replaced
with (1 � e���)=� (except for the term �n) and the resulting expres-
sion is developed in powers of e���, the characteristic equation of a
system with P+ delay compensator with (n � 1) commensurate de-
lays is obtained. This is exactly the controller of Proposition 2, when
taking one delay equal to zero and the other delays commensurate, i.e.
�i = (i � 1), i = 1; n.

Note also that a different proof can be carried out using some prop-
erties of subharmonics functions [2]. Indeed, by the continuity prin-
ciple [5], there exists a sufficiently small delay � > 0, such that the
stability of the “transformed” system obtained using the ‘formal modi-
fication’ suggested before (� 7! (1�e���)=�) is still preserved, if the
‘original’ (before transformation) system is stable. Thus, the stability
of the closed-loop system using multiple delay blocks follows straight-
forwardly after (n� 2) iterations of the procedure briefly presented.
Remark 2: (Stabilizability with delayed output feedback) In the

ODE case, all the output derivatives up to order (n� 1) are needed to
stabilize a chain of n integrators. However, for a numerical approxi-
mation of the (n� 1)th order derivative at least n sample instants are
needed. This indicates that the information obtained from less than n
output measurements is not sufficient for the necessary complete state
reconstruction and, thus, motivates the statement of Conjecture 1.

Using Property 1 the statements of Proposition 2 can be rephrased
as follows.
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Theorem 1: Assume that 0 � �1 < . . . < �n and q(�) Hurwitz.
Then, the control law

u(t) = � �
n
q0

�n�1

(�1)
q1

2! �n�2

(�1)2
q2 . . .

(n� 1)! �

(�1)n�1
qn�1

�T (�)�1
y(t� �1)

...
y(t� �n)

(19)

achieves asymptotic stability for small values of �. As � ! 0+, the n
rightmost eigenvalues converge to ��i, i = 1; n, with �i the zeros of
q(�).

In the next paragraph, we outline an alternative approach to design
a stabilizing feedback law.

B. Control Laws Based on Exact Pole Placement and Low-Gain
Design

In the control law

u(t) = �

n

j=1

kjy(t� �j)

there are n degrees of freedom, which allow to place n closed-loop
eigenvalues at prescribed values. This way stability cannot be insured
in general because the number of eigenvalues is infinite and only n of
them are controlled. However, this conflict can be solved when using
the low-gain approach, developed in [9], [10] in the context of the sta-
bilization of integrators with an input delay and input constraints. The
basic idea is as follows. When the controlled eigenvalues are placed
close to zero, we expect the gains to be low. However, when the gains
tend to zero, all the eigenvalues, except of n, are shifted far away in
the left half plane, because the DDE behaves as an ODE with a van-
ishing (delayed) perturbation. We now illustrate this approach with an
example, where n closed-loop eigenvalues are placed at the same po-
sition, because this gives rise to an explicit formula with a structure
analogous to (19):

Theorem 2: Assume 0 � �1 < �2 � � � < �n and let T (�) be defined
by (12). Then, control law

u(t) = (�1)n[�n n�
n�1 . . .n! �]

�T (�)�1
e���

. . .

e���

y(t� �1)
...

y(t� �n)

(20)

achieves asymptotic stability for small values of �. Moreover, there is
a closed-loop eigenvalue at � = �� with multiplicity n.

Proof: The characteristic equation of the closed-loop system is
given by

p(�)
�
= �

n +

n

j=1

kje
��� = 0:

Assigning n eigenvalues to � = �� yields the conditions
p(��) = 0; . . . ; pn�1(��) = 0, or

e�
���

� � � e�
���

��1e
�

��� . . . ��ne
�

���

...
...

(��1)
n�1e�

���
� � � (��n)

n�1e�
���

k1

k2
...
kn

= �

��n

n��n�1

...
n(n� 1) � � � 2��

:

This can be written as

1

(�1)

. . .

(�1)n�1

T (�)T

�

e�
���

. . .

e�
���

k1

k2
...
kn

= �

��n

n��n�1

...
n(n� 1) � � � 2��

and, therefore

k1

k2
...
kn

= �

e
���

. . .

e
���

T (�)�T

��n

(�1)n��n�1

...
(�1)n�1n(n�1)� � �2��

:

Choosing �� = �� leads to the control law (20). When we let �! 0+,
we have

K(�) = [k1(�) � � � kn(�)]
T
! 0:

Hence, the n eigenvalues at zero of the uncontrolled system are shifted
to ��, while other eigenvalues cannot cause instability when � (i.e.,
K(�)) is sufficiently small.
Remark 3: For q(�) = (� + 1)n the control law (19) reduces to

u(t) =

u(t) = � �
n n�n�1

(�1)

n(n� 1)�n�2

(�1)2
� � �

n! �

(�1)n�1

�T (�)�1
y(t� �1)

...
y(t� �n)

: (21)

This control law does not coincide with (20) because it is based on
an asymptotic approximation of q(�), while (20) is based on an exact
placement of n eigenvalues.
Remark 4: Both Theorems 1 and 2 guarantee asymptotic stability

for sufficiently small values of �. A threshold can be computed by per-
forming a numerical continuation of the closed-loop eigenvalues as a
function of the parameter �, as illustrated in the next section. Evenwhen
the structure of (19) or (20) is not explicitly used, a stabilizing feedback
law may still be synthesized by means of the so-called continuous pole
placement method [12].

IV. EXAMPLE

For the triple integrator, the control law (19) with q(�) = (�+ 1)3

and �i = (i � 1), i = 1; 3 takes the form

u(t) = �3��
9

2
�
2
� �

3
y(t) + (6�+ 6�2)y(t� 1)

+ �3��
3

2
�
2

y(t� 2): (22)

In Fig. 1(top) the rightmost eigenvalues of the closed-loop system are
displayed as a function of the parameter �. For � < ��, indicated on
the figure, the closed-loop system is asymptotically stable. According
to Theorem 1, the three dominant eigenvalues converge to � = �� as
� ! 0+.
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Fig. 1. Real parts of the closed-loop eigenvalues of the triple integrator,
controlled with (22) (top), respectively (23) (bottom). The calculations were
done with the software package DDE-BIFTOOL [6].

The control law (20) with �i = (i� 1), i = 1; 3 is given by

u(t) = �3�+
9

2
�
2
� �

3
y(t) + (6�� 6�2)e��y(t� 1)

+ �3�+
3

2
�
2

e
�2�

y(t� 2) (23)

and the closed-loop eigenvalues are shown in Fig. 1(bottom). Following
Theorem 2, three eigenvalues lie at � = ��, for all values of �. Note
that when � is small, the spectrum is similar to the previous case, which
is not surprising since the dominant terms in (22) and (23) (the terms
� �) are equal. Simulations of trajectories show that the performances
of controllers (22) and (23) are comparable, except when � is close to
the stability limit �� of (22). This is not surprising, because both con-
trollers have the property that, for small �, the closed-loop dynamics are
determined by three dominant eigenvalues, while the other eigenvalues
are far away in the left-half plane. However, an important difference is
that, in contrast to (23), the control law (22) only involves an approxi-
mate assignment of these three dominant eigenvalues at� = ��, where
the relative error converges slowly2 to zero as � ! 0+. This can be
seen in Fig. 1(top). In general, for the nth-order integrator, it may be
desirable from a performance point of view to assign the n rightmost

2This is especially the case for q(�) = (�+ 1) , because eigenvalues with
a multiplicity larger than one are generally very sensitive to changes of the
system’s parameters.

eigenvalues to (��1; . . . ; ��n), where �i, i = 1; n are the zeros of
an a priori chosen polynomial q(�) and � a scaling parameter. For a
given set of delays, formula (19) is readily applicable in such a case. A
drawback, however, is that � should not only be tuned to have only n

dominant eigenvalues, but also to insure that the latter are sufficiently
close to their desired values ��i, which may lead to unnecessarily small
gains. This problem does not occur when using the approach proposed
in Section III-B, which is based on an exact placement of the right-
most eigenvalues. Here, the drawback is that, although the gains can
be computed numerically for any polynomial q(�) and any value of �,
an explicit formula of a by � parametrized family of control laws only
exists for special cases of q(�) like q(�) = (� + 1)n, which led to
expression (20).

Finally, recall that when � is fixed to a value smaller than ��, (22)
and (23) actually define a whole one-parameter family of stabilizing
feedback laws, by making use of the Property 1.

V. CONCLUDING REMARKS

We addressed the stabilization problem of a chain of integrators
using multiple delays in the control law. More precisely, we have
proved that a chain of n integrators can be stabilized by a propor-
tional+delay controller including (n � 1) delays, or by a chain of n
delay blocks. The proposed proofs are constructive, and purpose two
different ways to handle the same problem. An explicit construction
of the corresponding controllers was proposed for the chain including
three integrators.
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A VSC Approach for the Robust Stabilization of Nonlinear
Plants With Uncertain Nonsmooth Actuator

Nonlinearities—A Unified Framework

M. L. Corradini, G. Orlando, and G. Parlangeli

Abstract—This note addresses the stabilization problem of an uncer-
tain intrinsically nonlinear single-input–single-output plant containing
nonsmooth nonlinearities (dead zone, backlash, hysteresis) in the actuator
device. A unified framework for its solution is here proposed, assuming
that the parameters of the nonlinearities are uncertain as well. To this
purpose, the hysteresis model used in a previous paper has been modified
into an “extended” one, and a robust control law ensuring asymptotic
stabilization has been synthesized using it. The resulting controller has
been shown to be a full generalization of previous results (it includes,
as particular cases, control laws previously developed for backlash and
dead zone), ensuring also that the inner “forbidden” part of nonlinearity
characteristics is never entered, even in the presence of uncertainties. The-
oretical results have been validated by simulation on a simple mechanical
system.

Index Terms—Hysteresis, nonlinear systems, nonsmooth actuator non-
linearity, robust control, sliding-mode control.

I. INTRODUCTION

In real control systems, actuators, sensors and, more in general, a
wide range of physical devices contain “nonsmooth” nonlinearities,
such as backlash, dead zone or hysteresis. Due to physical imperfec-
tions, indeed, such nonlinearities are always present in real plants, par-
ticularly in mechanical systems (e.g., the drive train in cars, rolling
mills, printing presses, industrial robots [3]). Nevertheless, control de-
sign techniques usually applied in practice do often ignore the presence
of such nonlinearities in system components. Indeed, much of the re-
cent advances in robust and nonlinear control would be otherwise not
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applicable, due to the nondifferentiable and nonmemoryless character
of those nonlinearities. As a consequence, system performance may
result severely deteriorated, showing oscillations, delays and inaccu-
racy (for example, servomechanisms usually require complete elimi-
nation of backlash to work properly). It can be claimed that “actuator
and sensor nonlinearities are among the key factors limiting both static
and dynamic performance of feedback control systems” [4].

Hysteresis phenomena usually show up in electromagnetic fields,
electronic relay circuits, mechanical actuators [5]. As well known, the
area enclosed by the loop is often thought of as representing energy
loss, hence it is important to be able to avoid such a condition. As a
matter of fact, finding a general model of hysteresis is still a debated
research issue, due to the phenomena complexity. A number of dif-
ferent models are available in the literature (for a complete survey, see
[6] and [7]). In most cases, however, rigorous mathematical models of
hysteresis tend to be very complicated and are hardly suited for con-
troller design. A well assessed hysteresis model, capturing most of its
characteristics, still retaining some simplicity being piecewise linear,
has been proposed in [1] and [4]. Even in simple cases, however, tradi-
tional control methods fail and new approaches claim for being devel-
oped [8], relevant uncertainty being also necessary to be accounted for
in the nonlinearity models parameters. It follows that the development
of control techniques coping with unknown hystereses is a challenging
issue, which recently re-attracted significant attention due to their pos-
sible applications in the so called smart actuators.

To address such a challenge, a number of different approaches have
been proposed, in most cases restricted to backlash. Just to name a few,
neural networks [9], dithering [10], fuzzy logic [11] and optimal con-
trol [12] have been used to compensate for nonlinearities present in the
actuator. An important research thrust, dealing with unknown nonlin-
earities cascaded to linear plants, is based on adaptive control [4]. The
main idea underlying this approach is the introduction of an inverse
model of the actuator nonlinearity, updated adaptively, aimed at can-
celling its effects. It is worth noting, however, that when the adaptive
inverse is used for control, the effect of hysteresis may not be com-
pletely cancelled [1].

Variable structure control (VSC) techniques have been used as
well [2], [13], [14]. Indeed, the well-known robustness features and
the discontinuous character of sliding mode control [15] appears
particularly well suited for handling intrinsically nonlinear and uncer-
tain single-input–single-output (SISO) plants containing nonsmooth
nonlinearities described using piece-wise linear functions. Moreover,
model inversion is not required, to avoid the possible amplification of
additive measurement disturbances which may result from inversion
of the output nonlinearity.

Following the lines of [2] and [16], a sliding-mode approach is
presented in this note in order to solve the stabilization problem for
an intrinsically nonlinear SISO plant with an uncertain hysteresis-like
nonlinearity in the actuator. With the aim of attaining a controller
general enough to include, as particular cases, the laws [2] previously
developed for backlash and dead zone, the hysteresis model used
in [1] has been modified into an “extended” one. Using it, a robust
control law ensuring asymptotic stabilization has been synthesized.
The developed controller has been shown to be a full generalization
of previous results, ensuring also that the inner “forbidden” part of
nonlinearity characteristics is never entered, even in the presence
of uncertainties.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an uncertain single-input intrinsically nonlinear system

_x = h(x) + �h(x) + g(x)u+ d(x; t) (1)

u = f(v) (2)

0018-9286/04$20.00 © 2004 IEEE


