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Abstract 
This paper studies the diamond problem in the context of delegation-based object 
systems. The diamond problem occurs when the same ancestor is inherited multiple 
times via different inheritance paths. The challenge is that replication and sharing of 
distinct attributes of the common ancestor must be simultaneously supported. We 
illustrate the relevance of the diamond problem by showing that it arises not only in 
multiple inheritance but also in other inheritance techniques, hence the more general 
term ’the common ancestor dilemma’. More specifically the hybrid approach that 
integrates object-based inheritance in a class-based model is also affected by the 
problem. We show that the hybrid approach provides an elegant solution for orthogonal 
expression of replication and sharing. Attributes that should be shared are modeled as 
part of the delegating objects, whereas attributes that should not be shared are modeled 
as part of subobjects of the delegating objects.  

1 Introduction 
The diamond problem[20], also known as "fork-join" inheritance[18], is a troublesome situation 
with multiple inheritance which occurs when the same ancestor is inherited multiple times via 
different inheritance paths, i.e. when two or more ancestors of a class D have a common ancestor 
A. The question arises whether the attributes (from the common ancestor A) should be inherited 
in as many versions as there are components deriving from it, or in a single version shared by all 
components. As argued by [7], both replication (i.e. inheriting multiple times) of the meaning of 
certain attributes and sharing (i.e. inheriting once) of the meaning of some other attributes should 
be simultaneously supported. 

We study the diamond problem in the context of delegation-based aspects. Since delegation 
supports composition at the level of objects, it provides a simple technology for dynamic aspects. 
Dynamic aspect-orientation is looked upon in this paper as adding or removing aspects to an 
already running application. A running application consists of a group of collaborating objects 
that interact with each other by sending messages. An aspect injects components into one or more 
of these objects and within each object the corresponding component adds new behavior for one 



or more operations of that object. Examples of delegation-based aspect technology are JAC[16], 
Delegation Layers[15], Object Teams[5] and Lasagne [23]. 

This paper focuses on intra-object composition: we look at the composition of components 
in one object. Each component stems from a different aspect and the different components are 
composed by placing them in an incremental modification hierarchy, very similar to a linear 
mixin-based inheritance hierarchy. This paper addresses the following issues:  

1. We discuss the scope of the diamond problem. Mira Mezini referred to the diamond 
problem in her dissertation[11] as the common ancestor dilemma problem. We propose to 
use this name for the diamond problem because we argue it is a more general problem that 
does not only arise with multiple inheritance but in every inheritance technique that 
supports composition of independently developed components. Here the sharing versus 
replication issue will arise in any composition of independently developed components that 
inherit from a common ancestor, hence the more general name the ’common ancestor 
dilemma’. Specifically, in aspect-oriented programming when two aspects extend (by 
means of any available incremental modification relationship) a common aspect, their 
composition will obviously face the same problem.  

2. We highlight the limitations of existing solutions to the common ancestor dilemma problem 
in the context of delegation.  

3. We illustrate the strength of hybrid models that integrate delegation in a class based 
programming model. Recent work[6, 2] has elaborated on such an approach. We show that 
the hybrid approach naturally provides an elegant solution for expressing replication and 
sharing. As such this solution applies to any delegation based aspect-oriented technology. 

4. We document the challenge of separating replicated methods. As argued by [11] replicated 
attributes must be kept separated from each other in different visibility scopes. Although the 
hybrid approach effectively resolves ordinary name collisions, it fails to separate replicated 
methods. Different solutions to this problem exist. We discuss the strengths and weaknesses 
of each of these solutions. 

 
As will be discussed in Section 2 all existing solutions to the original diamond problem incur 

problems. It is well known that these problems arise because inheritance and visibility control (for 
the sake of encapsulation) are not orthogonally realized from each other in the design of 
contemporary programming languages. This lack of orthogonality appears both at the language 
run-time level and at the programming level. At the language run-time level, the execution 
environment does not maintain sufficient information to keep the mechanisms apart from each 
other. At the programming level, wrong programming abstractions are provided so that 
inheritance and visibility control cannot be expressed in isolation from each other. The existence 
of this lack of separation of concerns is already well-documented, see for example [13] and [12]. 
In the line of these thoughts, this paper looks upon the issue to which extent the hybrid approach 
succeeds in orthogonalizing inheritance and visibility control. 

The paper is structured as follows. Section 2 overviews the original diamond problem in the 
context of multiple inheritance. Section 3 discusses the more general form of the problem and, 
therefore, proves the relevance of the problem in the context of broad software composition 
technologies. Section 4 studies the common ancestor problem in the light of delegation and points 
out why existing solutions needs to be restudied. Section 5 shows how the hybrid approach 
provides an elegant solution for orthogonal expression of replication and sharing. Section 6 
discusses the problem of keeping replicated attributes separated in distinct visibility scopes and 
discusses the existing solutions to the problem. Section 7 summarizes the paper. 



2 The common ancestor dilemma 
As shown by [20] the common ancestor dilemma occurs in multiple inheritance when the same 
ancestor is inherited multiple times via different inheritance paths, i.e. when two or more 
ancestors of a class D have a common ancestor A. As demonstrated in [7] it is desirable to be able 
to choose the alternative (replication versus sharing) individually for each attribute. Figure 1 (due 
to [7, 21]) illustrates this point. When looking at the attributes name, address and seniority 
in the common ancestor UniversityEmployee, there is no doubt that the attributes name and 
address should be shared by the Lecturer and AdministrativeStaff classes. What about 
seniority then?  The employee in question has two seniorities, one for each sort of 
employment. Therefore, the attribute seniority should be duplicated in the Lecturer and 
AdministrativeStaff classes. 

University Employee

- name
- address
- seniority

Lecturer Administrative Staff

Lecturer & Administrative
Staff

 
  

Figure 1.  Common ancestor dilemma 
 
Different solutions to the common ancestor problem in multiple inheritance hierarchies have 

been proposed. None of the approaches is fully satisfactory however (due to [21, 11]):  

• graph multiple inheritance: suffers from encapsulation problems and from the undesired 
duplicate parent operation [20] 

• linear multiple inheritance: all replication is simply not allowed to occur. 

• tree multiple inheritance: only supports replication [7] 

 
A more general technique is to use renaming[10]. Those attributes that must be replicated are 

renamed so that there are no name conflicts: those inherited attributes shall be shared that have 
not been renamed along any of the inheritance paths[18]. 

Sakkinen[18] refutes all of the above approaches because the common ancestor 
UniversityEmployee gets effectively split into two. The problem with this, according to 
Sakkinen, is that the integrity of the independently developed components Lecturer and 
AdministrativeStaff is violated. Sakkinen defines ’integrity’ as the requirement that no 
property of an object must be changed except by operations that intend and have the right to 
modify that object. 

Sakkinen notes that the "mathematical difference" (i.e. the incremental modification) of a 
subclass object and a corresponding superclass object is not defined in the conventional 



inheritance view (i.e. it is embedded directly in the subclass), or in any case it is not an object. To 
remedy this situation, Sakkinen proposes an inheritance model that is reduced to aggregation, 
yielding an inheritance model in which the difference will always be an object; but these objects 
cannot exist alone, only as part of complex objects. He shows that this leads to an inheritance 
model with much less ambiguous concepts[18]. 

If we translate the example of Figure 1 into Sakkinen’s inheritance model, the 
Lecturer&AdministrativeStaff class is represented by a complex object that aggregates 
three subobjects which are respectively instances of Lecturer, AdministrativeStaff and 
UniversityEmployee. Returning to the common ancestor problem: in order to accommodate 
the desired application semantics the UniversityEmployee subobject must be split into two: an 
S part that corresponds with the shared attributes and an R part that corresponds with the 
replicated attributes. Figure 2 illustrates this. The integrity of subobjects is thus violated 
according to Sakinnen. Indeed, if an operation of any of the classes involved 
([UniversityEmployee], [Lecturer] or [AdministrativeStaff]) updates shared attributes, based on 
the value of a replicated attribute, then invariants or assumptions that have been made about the 
children ([Lecturer] and [AdministrativeStaff]) may break. In other words all operations must be 
checked in order to identify and resolve such problems; thus the advantage of inheritance is lost. 

 

Lecturer &
Administrative

Staff

R R

S

Lecturer +
seniority

AdministrativeStaff +
seniority

University
Employee

-  seniority

 
Figure 2.  Splitting the common ancestor 

 
In order to circumvent integrity violation Sakkinen argues that the application designer must 

explicitly divide the common ancestor class into two classes in the first place: Person 
(containing name and age), and Only-UniversityEmployee(=UniversityEmployee-
Person, containing the attribute seniority). Person is then a shared parent of Only-
UniversityEmployee. Lecturer and AdministrativeStaff would inherit without sharing 
from Only-UniversityEmployee [18]. Figure 3 illustrates this. Although this is a clean 
approach, it puts a burden on the application designer because it implies that the common 
ancestor dilemma must be anticipated at class design time. 
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Figure 3.  Splitting the common ancestor during class design 

3 Generalization of the problem 
The existing literature we have studied [7, 18, 21, 11, 19] indicates that the diamond problem is 
very difficult to solve for state attributes. As such, it is tempting to ignore multiple inheritance: 
given the fact that the common ancestor problem seemingly only appears with multiple 
inheritance, the problem could simply be side-stepped by discarding multiple inheritance as a 
useful software composition tool because it inherently suffers from implementation problems[3, 
22] and conceptual problems[19] anyway. This would however be the wrong thing to do as 
argued by the following points. 

We observe that the common ancestor dilemma appears with any inheritance approach that 
supports composition of independently developed components. Indeed, if two independently 
developed components, that inherit from a common ancestor, are composed (by either multiple 
inheritance, mixin-based inheritance[1], or any other eligible inheritance technique), the problem 
arises. For example, suppose it was possible to specify explicit inheritance relationships between 
mixin-classes, then mixin-based inheritance would also have to deal with the problem. Figure 4 
illustrates this. Consequently the original diamond problem, identified in multiple inheritance, is 
an instance of the more general ’common ancestor dilemma’ problem.  

Another, but less important point is the usefulness of repeated inheritance as a 
compositional tool. As indicated by [10], inheritance of the same ancestor via different paths is a 
generalization of repeated inheritance, where the same parent class is directly inherited multiple 
times. To better distinguish the two cases, the former case is also called indirect repeated 
inheritance, while the latter direct repeated inheritance. Direct repeated inheritance is clearly 
useful as a compositional tool. For example, one class can be explicitly inherited twice to 
implement two similar, but distinct features at the object level (for example a student that is also 
an employee at our university has two MemberID attributes; Both of the attributes may be 
instantiated from the same class, but their respective values are necessarily different[21]). 
Consequently we cannot ignore the common ancestor dilemma problem because otherwise the 
usefulness of direct repeated inheritance would be wasted. 
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Figure 4.  Diamond problem and common ancestor dilemma problem 

 
The above two points therefore prove the relevance of the common ancestor dilemma 

problem in the context of a broad range of software composition technologies. In fact, the 
problem also arises in delegation-based object systems. The next section discusses this in further 
detail and explains why solutions to the common ancestor dilemma problem must be revisited in 
the light of delegation and, therefore, dynamic aspects. 

4 The common ancestor dilemma in the context of delegation 
This section studies how the common ancestor dilemma arises in programming languages that 
support delegation. We will show that the problem of integrity violation, as pointed out by 
Sakkinen, is irrelevant in the light of delegation, because it is superseded by another problem. 
Hence, we investigate what is a good solution to the common ancestor dilemma problem in the 
light of delegation. Before we proceed with the discussion, we first introduce delegation and 
explain the kinds of delegation that are relevant in the context of aspect-orientation. 

4.1 Delegation 

Delegation was originally introduced by Lieberman[8] in the framework of a classless prototype-
based language. Delegation allows the behavior of an object to be defined in terms of the 
behavior of another object. An object, called the child, may have modifiable references to other 
objects, called its parents. A message for which the receiving object has no matching method are 
automatically forwarded to one of its parents, that responds on behalf of the receiver. When a 
suitable method is found in the parent object (the method holder) it is executed after binding its 
implicit self parameter. This parameter refers to the message receiver on whose behalf the method 
is executed. Automatic forwarding with binding of self to the message receiver is called 
delegation. Automatic forwarding with binding of self to the method holder is called 
consultation[6]. 



There are two forms of delegation. Static and dynamic delegation. In dynamic delegation the 
parent of an object can dynamically change. Here the parent of an object is typically stored in 
some specially identified instance variable. This instance variable can be consulted and also 
modified, thus changing an object’s parent. With static delegation, the parent object must be 
assigned when the object is created and cannot be reassigned during the object’s lifetime. 
Furthermore, with multiple delegation a child object can have multiple parent objects, whereas 
with single delegation a child object can only have one parent object. 

Delegation can also be interpreted as an incremental modification mechanisms and, 
therefore, delegation has also been called object-based inheritance[21]. Child and parent 
respectively correspond with inheriting client and ancestor. 

4.1.1 Hybrid approaches 

Delegation has recently regained a lot of interest as part of a hybrid approach that integrates 
delegation in a class-based model. The hybrid approach has regained interest because of its 
powerful, yet type safe use in the context of class-based programming languages, demonstrated 
by Lava[6], and support for type transparency, demonstrated by the Generic Wrappers 
approach[2]. 

To illustrate the concepts in the remainder of this paper as concretely as possible, we will use 
a concrete programming model that integrates delegation with the class-based programming 
model. With this end in view we take the programming model of the Generic Wrappers approach 
[2] which we will shortly overview here. 

Parent and child objects are declared as normal classes. The parent object and each of its 
child objects may be associated to a separate (class-based) inheritance hierarchy. For 
example: 

 
public class DeclaredParent { 
   public void b(); 
} 
 
public class Parent extends DeclaredParent { 
   public void b() { 
      ... 
      super.b(); 
      ... 
   } 
  
  public void foo() { ... } 
} 
 
Child objects are classes that are declared to wrap instances of a given reference type (class, 
interface) or of a subtype thereof. The wrapped instance is called the wrappee. Like an 
extends clause to specify a superclass, a wraps clause is used to state the static wrappee 
type. This also declares the wrapper class to be a subtype of the static wrappee type. For 
example the declaration 
 
public class Child wraps DeclaredParent {} 
 
states that each instance of the class Child wraps an instance of a class DeclaredParent or 
of any subtype thereof. The declaration makes Child a subtype of DeclaredParent. Thus, 
instances of Child can be assigned to variables of type DeclaredParent and Child has all 
public members of DeclaredParent. 

To assure that this subtyping relationship always holds (and thereby that forwarding of 
calls never fails) instances of Child must always wrap an instance of DeclaredParent or a 



subtype thereof - already during the execution of constructors. Hence the wrappee must be 
passed as a special argument (in the syntax of [2] by < >) to class instance creation 
expressions 

 
Parent p = new Parent(...); 
DeclaredParent c = new Child(...)<p>; 
 
Figure 5 shows a class diagram1 that graphically represents the program listed above where 
delegation links correspond with the wraps clauses and inheritance links correspond with 
the extends clause. 

  

Child DeclaredParent

- b()

Parent

- b()
- foo()

delegation

inheritance

instance of

c p
b()

 
Figure 5.  Delegation in a class-based programming model 

 
Delegation is illustrated by the fact that method b(), declared in DeclaredParent, can be 
called on the Child object. This is illustrated in the following program fragment, which is 
based on the program listed above. Furthermore, since delegation enables late binding of 
self, the b() method of Parent is actually executed: 
 
c.b(); 
 
A particularity of the hybrid approach is its support for type transparency. This means that 
child objects are not only of the static, but also of the actual wrappee type. For example, a 
Child object wrapping a Parent object is also of the latter type and not just of type 
DeclaredParent. Hence, such an aggregate can be assigned to a variable of type Parent 
and the latter’s methods can be called on it. In the following program fragment, which is 
based on the definition of Child above, the type test returns true and the cast succeeds:  
 
if (c instanceof Parent) { 
  ((Parent)c).foo(); 
} 

 

4.1.2 Delegation and dynamic aspects 

The hybrid approach has especially gained a lot of interest as a simple technique for dynamic 
composition of aspects. An aspect could be modeled as a set of child classes. An aspect can then 
                                                 
1 The graphical notation of the figure is due to [6]. 



be injected in an already running application by placing instances of these child classes around 
different application objects that play the role of parent object. Furthermore, there already exist 
various approaches that lift delegation to real dynamic object modification. For instance, 
approaches such as JAC[16], Delegation Layers[15], Object Teams[5] and Lasagne [23] free the 
programmer from having to manually interpose a child object around a parent object  through 
explicit object reference switching.  

Given the subject of this paper, we only focus on intra-object composition: the composition 
of multiple child objects around a single parent object. Each child object stems from a different 
aspect and the different child objects are composed by placing them in a linear incremental 
modification hierarchy (also known as conjunctive wrapping), very similar to mixin-based 
inheritance hierarchies [1]. Of course this statement indicates that the topic of this paper is a 
general language design issue that has only marginally to do with aspects. However, when 
looking through an aspect-oriented lens, the relevant design space of delegation-based systems 
becomes considerably smaller. First, we do not regard delegation in the arena of conceptual 
modeling but as a tool for composing independently developed components. In other words we 
study delegation as a composition operator, not as a specialization or an “is-a” relationship. 
Second, this paper takes single delegation as the basic intra-object composition operator because 
every child object is meant to extend only one parent object.   

4.2 Revisiting the common ancestor dilemma problem 

Single delegation also has to deal with the common ancestor dilemma. When a child and a parent 
object are composed by means of delegation, the common ancestor dilemma arises in one of the 
following two cases as illustrated in Figure 6:  

• (a) inheritance from a common declared superclass 

• (b) delegation to a common declared super type 

  

delegation

inheritance

instance of instance of

inheritance

Jeff

delegation delegation

instance of instance of

Jeff

University Employee

- name
- address
- seniority

instance of

(a) (b)

Administrative Staff Lecturer Administrative Staff Lecturer

University Employee

- name
- address
- seniority

 

Figure 6.  Delegation and the common ancestor dilemma 
  
Since we studied the common ancestor dilemma in the context of Sakkinen’s inheritance 

model[18] (see Section 1), we first have to map Sakkinen’s model to delegation. This is quite 
easy to do because Sakkinen reduces inheritance to aggregation: the notion of complex object 
corresponds with the dynamically bound common self across the web of parent and its child 
objects. A subobject in that complex object corresponds with the parent or one of its child objects. 



We will now explain how the problem focus is shifted in the light of delegation. Suppose 
Jeff who is a Lecturer is asked to handle some administrative task as well. To accommodate 
this situation in real-time, a reconfiguration must take place at run-time: the complex object 
representing Jeff must be dynamically extended with an AdministrativeStaff subobject. As 
argued in Section 1 it is desirable to be able to choose between replication and sharing 
individually for each attribute of the common ancestor UniversityEmployee. In case (a), 
however, replication is the obligatory default for all the common ancestor’s attributes, while 
sharing is in case (b). In case (a) Jeff would have duplicate name and address attributes which is 
undesirable from a conceptual modelling standpoint (the name and home address of a person are 
conceptually unique) and from a state consistency standpoint (clients accessing different 
subobjects must observe and modify (through getters and setters methods) the accidentally 
duplicated attributes in a mutually consistent fashion). In case (b) Jeff would have the same 
seniority for both sorts of employment which is obviously undesired from a conceptual modelling 
standpoint. So also here, the UniversityEmployee subobject of Jeff needs to be split into two. 

However, splitting of the common ancestor simply cannot be performed because the 
composition operator provided by delegation operates at run-time, at the level of operational 
subobjects. Technically speaking, splitting a subobject after creation (i.e. at run time) is not 
feasible. 

As such, when already running application objects (complex objects in the terminology of 
Sakinnen) are to be modified over time with subsequent new components, the common ancestor 
dilemma may strike at any point of time when any pair of two components share a common 
ancestor. If the dilemma occurs, however, then the common ancestor has been instantiated 
already. The ancestor therefore cannot be split anymore. 

5 Towards an elegant solution 
We consider three alternative approaches to address the aforementioned problem. 

The first approach would address a solution that disallows specifying any explicit inheritance 
relationship. The idea is that by disallowing specification of explicit inheritance relationships the 
common ancestor dilemma will not occur in the first place and as such no solution would be 
required. Pure mixin-based inheritance (where explicit inheritance relationships between mixin 
classes is not allowed) is an example. However this is a fake solution because, as argued in 
Section 3, direct repeated inheritance faces the same issues of the common ancestor dilemma. As 
such the problem still needs to be solved in order to gain the expressive power of direct repeated 
inheritance. 

A second approach would be to advance the technological state-of-the-art in virtual machine 
support to allow splitting subobjects while the complex object is running. We think working 
towards this goal is neither realistic nor a good idea. First, there are the problems related to 
integrity violation as mentioned by Sakinnen. Secondly, although there exists work about run-
time support for changing classes [9] or adding aspectual behavior during execution[17], splitting 
classes at run-time seems extremely difficult to do without incurring a lot of other problems. 

The third and only option left for dealing with the common ancestor dilemma in the light of 
delegation is the original solution from [18]: namely to side-step the splitting problem by 
explicitly dividing the common ancestor into two classes S and R during software design. The 
class S contains attributes to be shared and the class R is to be replicated (see Figure 3). What is 
obviously needed is the expressive power that enables the modelling of such an ancestor 
structure. 

This is where the power of the hybrid approach comes into play. It provides a natural 
solution for respectively expressing sharing and replication without interfering with each other. 
Sharing is realized by means of delegating to the S subobject, while replication is realized by 
means of inheriting the R class. The code below (based on the programming model introduced in 



Section 4.1.1) illustrates how a structure similar to Figure 3 can be easily implemented: class 
UniversityEmployee is effectively split in two classes during class design: class Person 
encodes the S part and Only-UniversityEmployee encodes the R part. Since university 
employees are persons, class Only-UniversityEmployee obviously needs to extend the 
Person class. Since the Person class represents the S part, this incremental modification should 
be expressed by means of delegation. 

public class Person { 
   private Name name; 
   private Address address; 
 
   public String getName() {...} 
   public Address getAddress() {...} 
 
} 
 
public class Only-UniversityEmployee wraps Person{ 
   private Seniority seniority; 
 
   public Seniority getSeniority() {...} 
 
} 
 
The classes, representing different forms of employment, however, need to be defined as an 
incremental modification by means of class-based inheritance because Only-
UniversityEmployee needs to be replicated. 

public class Lecturer extends Only-UniversityEmployee { 
   String title; 
 
   public Lecturer(String title) { 
     this.title = title 
   } 
 
   public String getName() { 
      return title + super.getName(); 
   } 
 
  public void foo() {...} 
       self.getSeniority(); 
  } 
} 
 
public class AdministrativeStaff extends Only-UniversityEmployee { 
   String jobtitle; 
 
   public void bar() {...} 
       self.getSeniority(); 
  } 
 
  public String getName() { 
    return super.getName() + “, ” + jobtitle; 
} 
 
Finally, the scenario in Section 4.2 that Lecturer Jeff is suddenly employed as 
AdministrativeStaff can easily be accommodated by wrapping the jeff object and 
reassigning the result to the jeff variable. 

//main 
Only-UniversityEmployee jeff = new Lecturer("Prof. dr".)<new 
Person(...)>; 
 



... 
 
jeff = new AdministrativeStaff(...)<jeff>; 
 
((Lecturer)jeff)foo(); 
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Figure 7.  Jeff becomes administrative staff 

 
This is further illustrated in Figure 7. Before wrapping it with AdministrativeStaff, 

complex object jeff consists of an object hierarchy of which the Lecturer subobject encloses 
an Only-UniversityEmployee subobject. After wrapping complex object jeff, both 
Lecturer and AdministrativeStaff subobjects contain a duplicate of the Only-
UniversityEmployee class. 



6 Keeping replicated attributes separated 
Replicated attributes must be kept separated from each other because they are considered to 
belong to two different subobjects of a single complex object. Coping with this problem equals at 
first sight to the problem of coping with name collisions in general that occur when two 
independently developed components accidentally use the same name for different attributes; 
Attributes involved in such ordinary name collisions are often called homonymous attributes [11]. 

Although the hybrid approach effectively deals with ordinary name collisions, it fails to 
separate replicated methods as will be explained. This section subsequently discusses various 
existing solutions to this particular problem. 

6.1 The problem 

In the hybrid approach replicated state variables can easily and effectively be kept separated from 
each other if they are declared as non-public attributes. Dealing with replicated methods is more 
difficult as will be explained below. 

To deal with homonymous methods in the context of delegation, Günter Kniesel proposes 
the following adapted rule for method overriding[6]: 

For a message recv.n(args) (i.e. self.getSeniority()) a method with signature σ 
(i.e. getSeniority()) from type T (i.e. AdministrativeStaff overrides the 
matching method from the static type of recv, Tstat(i.e. Lecturer) if there is some 
common declared supertype of T and Tstat (i.e. Only-UniversityEmployee) that 
contains σ.  

 
The adapted rule for method overriding essentially boils down to the existence of a common 

declared supertype. This exact feature, however, renders the adapted rule completely useless for 
keeping replicated methods separated from each other. This is because replicated methods are 
declared by a common ancestor class and, therefore, the adapted rule would incorrectly enable 
overriding between replicated methods. The adapted method rule does work for homonymous 
methods because these methods stem from different unrelated ancestors. 

Let us apply the adapted rule to the running example to illustrate our point. Consider in 
Figure 7, the complex object jeff, that consists of a Person subobject, a Lecturer subobject 
with an enclosed Only-UniversityEmployee subobject, and an AdministrativeStaff 
subobject with a second enclosed Only-UniversityEmployee subobject. Here overriding 
between the Lecturer-specific and AdministrativeStaff-specific methods of the 
getSeniority() operation is enabled according to the adapted rule. This is because there exists 
a common declared supertype of Lecturer and AdministrativeStaff (i.e. Only-
UniversityEmployee) that declares getSeniority(). As a result, the self call to 
getSeniority() depicted in the above example from within the Lecturer subobject will be 
incorrectly redirected to the AdministrativeStaff object. As such it is clear that the adapted 
rule for method overriding incorrectly enables overriding between replicated methods. Note that 
the adapted rule also breaks in the case of direct repeated inheritance. 

6.2 Existing solutions 

This section discusses various solutions to the problem of keeping replicated methods separated 
in the hybrid approach. Since our solution of expressing replication and sharing is based on a 
redesign, it is worth to consider other redesign options for maintaining replicated methods in 
mutually invisible scopes. We also investigate solutions based on additional machinery in 
programming language. Basically, a good solution makes a good trade-off between providing 



additional machinery that the average programmer can understand, and creating software designs 
that are easy to maintain and evolve. 

6.2.1 Disjunctive wrapping 

An astute reader might notice that replicated methods can easily be kept separated from each 
other by disjunctively wrapping the AdministrativeStaff and Lecturer objects (instead of 
conjunctively wrapping them). One could indeed have one instance of Lecturer and one 
instance of AdministrativeStaff, each delegating to a Person object, but not to each other. 
By letting the client have different references “jeffAsLecturer” and “jeffAsAdministrator” to the 
two delegating objects, one could already achieve the desired separation between replicated 
methods. This of course also works for self calls because self is dynamically bound to the original 
message receiver.  

This solution is very elegant from a conceptual modeling point of view and is also in line 
with a frequently occurring situation in role-based design. In the latter it frequently occurs that an 
object plays different roles in different contexts and within each context the object plays never 
more than one role. The role an object plays depends thus on the context in which the object is 
currently being used.  

From a compositional point of view, however, disjunctive wrapping does not support 
combination of methods that override a method of the shared part S. In the running example both 
Lecturer and AdministrativeStaff override the getName() operation of Person. In a 
disjunctive wrapping style it is not possible to invoke the full-combined behavior of both 
overriding methods.  

6.2.2 Replacing class-based inheritance with aggregation 

Another solution is to model the R part of the common ancestor as a “real aggregated” subobject 
of the delegating objects. Thus instead of inheriting the R part one aggregates the R part. Suppose 
in the running example Lecturer and AdministrativeStaff would directly delegate to 
Person, whereas the Only-UniversityEmployee class is completely independent of the 
Person hierarchy. Then replication could simply be expressed by having the delegating objects 
aggregate a different Only-UniversityEmployee object. Having moved the "seniority feature" 
to different aggregated subobjects, we obviously do not get any overriding of getSeniority() 
methods any more.  

This approach solves the issue of separating replicated methods quiet nicely for self calls. 
For non-self calls, however, there is the problem of the necessary plumbing that must be manually 
programmed in order to allow clients access to the appropriate replicated subobject. This also 
implies that the client has to manually navigate through the delegation hierarchy to find the 
appropriate subobject he is currently interested in. 

6.2.3 Multiple delegation from a proxy object 

Letting a surrogate / proxy object multiply delegate to the Lecturer and to the 
AdministrativeStaff object (which themselves share the identical Person parent) expresses 
exactly the desired sharing and replication semantics and lets it simply be understood from the 
shape of the delegation hierarchy as depicted in Figure 3. The desired separation between 
replicated methods can be easily achieved in multiple delegation by using the “sender path 
tiebreaker rule", used in the design of the Self programming language[25], or by renaming of 
selectors[10], used in the design of Lava[24]. Moreover, these solutions nicely complement the 
disjunctive wrapping style. Combination of methods that override a shared method can be 
accommodated by explicit local redefinitions at the proxy.  



The disadvantage of the approach is that the creation of the proxy class, renaming and 
explicit local redefinitions puts an extra burden on the programmer. Furthermore, the approach is 
not scalable enough to cope with the situation that multiple common ancestor dilemmas must be 
resolved within the same complex object.  

6.2.4 Scope identifiers 

The Rondo object model[12, 11] effectively supports separating replicated methods by means of a 
mechanism based on so called scope identifiers. This mechanism is uniform in the sense that it 
resolves both kinds of conflicts (replicated methods as homonymous methods) in identical the 
same way. Although the Rondo model has not been developed in the context of delegation-based 
systems, a mapping to delegation is straightforward. Scope identifiers are constructed as follows: 
each child object is marked with a unique label and the scope identifier of a method simply 
concatenates the labels of child object that are in the visibility scope of that method.  

Although the Rondo model is elegant from a language run-time engineering point of view, 
the mechanism of scope identifiers does not provide the right abstraction for dealing with name 
collisions that occur when non-self calls are sent from message-passing clients. This is because 
the labels of child objects that are used to construct scope identifiers are implicitly generated by 
the internal structures of the Rondo engine and therefore do not have a meaning in the domain of 
message-passing clients. As such it seems that although the mechanism of scope identifiers 
sufficiently applies separation of concerns at the language design space to effectively control 
distinct visibility scopes for replicated methods, the mechanism does not have a meaning to 
message-passing clients. 

The other solutions discussed above do not suffer from this problem because they model 
visibility scopes in the domain of the application and, therefore, have a clear meaning in the 
domain of message-passing clients. We believe that a programming language whose execution 
environment is based on the Rondo model and whose programming model provides sufficient 
expressive power to model scope identifiers in the domain of the application is a very powerful 
solution. Future work in this context is to study to which extent the notion of dependent types[4, 
14, 15] is feasible to serve this purpose. The notion of dependent types implies that an object can 
aggregate one or more inner classes that are virtual, meaning that the type of these inner classes is 
dependent on the identity and type of the aggregating outer object.  

7 Conclusion 
This paper has focused on dynamic intra-object composition. We look at the composition of 
aspects in one object. Each component stems from a different aspect and the different components 
are composed by placing them in an incremental modification hierarchy, very similar to a linear 
mixin-based inheritance hierarchy.  

We have discussed the scope of the common ancestor dilemma problem from this 
perspective. Specifically, in aspect-oriented programming when two aspects extend (by means of 
any available incremental modification relationship) a common aspect, their composition 
obviously faces a similar problem. We have highlighted the limitations of existing solutions to the 
common ancestor dilemma problem in the light of dynamic aspects. We have illustrated the 
strength of hybrid models that integrate delegation in a class based programming model. We have 
shown that the hybrid approach naturally provides an elegant solution for expressing replication 
and sharing. As such this solution applies to any delegation-based aspect-oriented technology. We 
have documented the challenge of separating replicated methods and we have discussed the 
existing solutions to this problem.  
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