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Abstract. Automated functional testing consists in deriving test cases
from the specification model of a program to detect faults within an
implementation. In our work, we investigate using Constraint Handling
Rules (CHRs) to automate the test cases generation process of functional
testing. Our case study is a formal model of the Java Card Virtual Ma-
chine (JCVM) written in a sub-language of the Coq proof assistant. In
this paper we define an automated translation from this formal model
into CHRs and propose to generate test cases for each bytecode defini-
tion of the JCVM. The originality of our approach resides in the use of
CHRs to faithfully model the formally specified operational semantics of
the JCVM. The approach has been implemented in Eclipse Prolog and
a full set of test cases have been generated for testing the JCVM.
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1 Introduction

The increasing complexity of computer programs ensures that automated
software testing will continue to play a prevalent role in software valida-
tion. In this context, automated functional testing consists in 1) generat-
ing test cases from a specification model, 2) executing an implementation
using the generated test cases and then 3) checking the computed results
with the help of an oracle. In automated functional testing, oracles are
generated from the model to provide the expected results. Several mod-
els have been used to generate test cases: algebraic specifications [1], B
machineries [2] or finite state machines [3], just to name a few.
In our work, we investigate using Constraint Handling Rules (CHRs)
to automate the test cases and oracles generation process of functional
testing. Our specification model is written in a sub-language of Coq:

? This work is supported by the Réseau National des Technologies Logicielles as part
of the CASTLES project (www-sop.inria.fr/everest/projects/castles/). This
project aims at defining a certification environment for the JavaCard platform. The
project involves two academic partners: the Everest and Lande teams of INRIA and
two industrial partners: Oberthur Card Systems and Alliance Qualit Logicielle.



the Jakarta Specification Language (JSL) [4]. Coq is the INRIA’s proof
assistant [5] based on the calculus of inductive constructions that al-
lows to mechanically prove high-order theorems. Recently, Coq and JSL
were used to derive certified Byte Code Verifiers by abstraction from
the specification of a Java Card Virtual Machine [4, 6]. The Java Card
Virtual Machine (JCVM) carries out all the instructions (or bytecodes)
supported by Java Card (new, push, pop, invokestatic, invokevirtual,
etc.). In this paper, we present how to generate test cases and oracles for
each JSL byte code specification. Our idea is to benefit from the high
declarativity of CHRs to express the test purpose as well as the JSL
specification rules into a single framework. Then, by using traditional
CHR propagation and labelling, we generate test cases and oracles as
solutions of the underlying constraint system. The approach has been
implemented with the CHR library of Eclipse Prolog [7] and a full set of
test cases have been generated for testing the JCVM.
This paper is organised as follows: Section 2 introduces JSL and its
execution model; Section 3 recalls some background on CHRs; Section
4 introduces the translation rules used to convert a formal specification
written in JSL into CHRs; Section 5 presents our algorithm to generate
functional test cases and oracles for testing an implementation of the
JCVM; Section 6 describes some related works, and finally Section 7
concludes the paper with some research perspectives.

2 The Jakarta Specification Language

The Jakarta Specification Language (JSL), as introduced in [8], is a first
order language with a polymorphic type system. JSL functions are for-
mally defined with conditional rewriting rules.

2.1 Syntax

JSL expressions are first order terms with equality (==), built from
term variables and from constant symbols. A constant symbol is either
a constructor symbol introduced by data types definitions or a function
symbol introduced by function definitions.
Let C be a set of constructor symbols, F be a set of function symbols
and V be a set of term variables. The JSL expressions set is the term set
E defined by: E::= V|E == E|CE∗|FE∗. Let var be the function defined
on E → V∗ which returns the set of variables of a JSL expression.
Each function symbol is defined by a set of conditional rewriting rules.
This unusual format for rewriting is close to functional language with
pattern-matching and proof assistant. These (oriented) conditional rewrit-
ing rules are of the form l1 → r1, . . . , ln → rn ⇒ g → d where:
– g = fv1 . . . vm where ∀i, vi ∈ V and ∀i, j, vi 6= vj

– li is either a variable or a function which does not introduce new
variables: for 1 ≤ i ≤ n, var(li) ⊆ var(g)∪ var(r1) ∪ . . . ∪ var(ri−1)

– ri should be a value called pattern (built from variables and con-
structors), should contain only fresh variables and should be linear1:

1 All the variables are required to be distinct



for 1 ≤ i, j ≤ n and i 6= j, var(ri) ∩ var(g) = ∅ and
var(ri) ∩ var(rj) = ∅

– d is an expression and var(d) ⊆ var(g) ∪ var(r1) . . . ∪ var(rn)
The rule means if for all i, li can be rewritten into ri then g is rewrit-
ten into d. Thereafter, these rules are called JSL rules. JSL allows the
definition of partial or non-deterministic functions.

Example 1 (JSL def. of plus extracted from the JCVM formal model).
data nat = 0 | S nat.

function plus :=
〈plus r1〉 n → 0 ⇒ (plus n m) → m;
〈plus r2〉 n → (S p)⇒ (plus n m) → (S (plus p m)).

2.2 Execution model of JSL

Let e|p denote the subterm of e at position p then expression e[p ← d]
denotes the term e where e|p is replaced by term d.
Let R be a set of rewriting rules, then an expression e is rewritten into
e′ if there exists a rule l1 → r1, . . . , ln → rn ⇒ g → d in R, a position p

and a substitution θ such as:
– e|p = θg and e′ = e[p← θd]
– {θli →

∗ θri}∀1≤i≤n where →∗ is the transitive cloture of →
Note that nothing prevents JSL specifications to be non-terminating or
non-confluent. However, the formal model of the JCVM we are using as
a case study has been proved terminating and confluent within the Coq
proof assistant [4, 6].

Example 2 (Rewriting of (plus 0 (plus(S 0) 0))).
(plus 0 (plus (S 0) 0))→r1 (plus (S 0) 0)→r2 (S (plus 0 0))→r1 (S 0)

3 Background on Constraint Handling Rules

This section is inspired of Thom Frühwirth’s survey and book [9, 10].
The Constraint Handling Rules (CHRs) language is a committed-choice
language, which consists of multi-headed guarded rules that rewrite con-
straints into simpler ones until they are solved. This language extends
a host language with constraint solving capabilities. Implementations of
CHRs are available in Eclipse Prolog [7], Sicstus Prolog, HAL [11], etc.

3.1 Syntax

The CHR language is based on simplification where constraints are re-
placed by simpler ones while logical equivalence is preserved and prop-

agation where new constraints which are logically redundant are added
to cause further simplification. A constraint is either a built-in (prede-
fined) first-order predicate or a CHR (user-defined) constraint defined by
a finite set of CHR rules. Simplification rules are of the form H <=> G |

B and propagation rules are of the form H ==> G | B where H denotes a
possibly multi-head CHR constraint, the guard G is a conjunction of con-
straints and the body B is a conjunction of built-in and CHR constraints.



Each time a CHR constraint is woken, its guard must either succeed or
fail. If the guard succeeds, one commits to it and then the body is ex-
ecuted. Constraints in the guards are usually restricted to be built-in
constraints. When other constraints are used in the guards (called deep
guards), special attention must be paid to the way guards are evaluated.
Section 4.2 discusses the use of deep guards in our framework.

Example 3 (CHRs that can be used to define the plus constraint).
R1 @ plus(A,B,R) <=> A=0 | R=B.

R2 @ plus(A,B,R) <=> A=s(C) | plus(C,B,D), R=s(D).

C @ plus(A,B,R) ==> plus(B,A,R).

The construction . . .@ gives names to CHRs.

3.2 Semantics

Given a constraint theory (CT) (with true, false and an equality constraint
=) which determines the meaning of built-in constraints, the declarative
interpretation of a CHR program is given by a conjunction of universally
quantified logical formula. There is a formula for each rule.

If x̄ denotes the variables occurring in the head H and ȳ (resp. z̄) the
variables occurring in the guard (resp. body) of the rule, then

– a simplification CHR is interpreted as ∀x̄(∃ȳG→ (H ↔ ∃z̄B))

– a propagation CHR is interpreted as ∀x̄(∃ȳG→ (H → ∃z̄B))

The operational semantics of CHR programs is given by a transition
system where a state < G, C > consists of two components: the goal
store G and the constraint store C. An initial state is of the form <

G, true >. A final state < G, C > is successful when no transition is
applicable whereas it is failed when C = false (the constraint store is
contradictory).

Solve If C is a built-in constraint and CT |= (C ∧D)↔ D′

Then < C ∧G, D >7→< G, D′ >

Simplify If F <=> D|H and CT |= ∀(C → ∃x̄(F = E ∧D)
Then < E ∧G, C >7→< H ∧G, (F = E) ∧D ∧ C >

Propagate If F => D|H and CT |= ∀(C → ∃x̄(F = E ∧D)
Then < E ∧G, C >7→< E ∧H ∧G, (F = E) ∧D ∧ C >

Rules are applied fairly (every rule that is applicable is applied eventu-
ally). Propagation rule is applied at most once on the same constraints
in order to avoid trivial non-termination. However, CHR programs can
be non-confluent and non-terminating.

Example 4 (Several examples of the CHR solving process).
plus(s(0),s(0),R)

7→Simplify R2 plus(0,s(0),R1), R=s(R1)

7→Simplify R1 R1=s(0), R=s(R1)

7→Solve R=s(s(0))

The following example exploits the propagation rule of plus. Without
this rule, the term plus(M,s(0),s(s(0))) would be delayed.



plus(M,s(0),s(s(0)))

7→Propagate C plus(M,s(0),s(s(0))), plus(s(0),M,s(s(0)))

7→Simplify R2 plus(M,s(0),s(s(0))), plus(0,M,s(0))

7→Simplify R1 plus(M,s(0),s(s(0))), M=s(0)

7→Solve plus(s(0),s(0),s(s(0))), M=s(0)

7→Simplify R2 plus(0,s(0),s(0)), M=s(0)

7→Simplify R1 s(0)=s(0), M=s(0)

7→Solve M=s(0)

The following example shows the deduction of a relation (M = N):
plus(M,0,N)

7→Propagate C plus(M,0,N), plus(0,M,N)

7→Simplify R1 plus(M,0,N), M=N

7→Solve plus(M,0,M), M=N

4 JSL to CHR translation method

Our approach is based on the syntactical translation of JSL specifica-
tions into CHRs. The translation method is described under the form of
judgements.

4.1 Translation method

There are three kinds of judgements: judgements for JSL expressions,
judgements for JSL rewriting rules (main operator →) and judgements
for JSL functions (main operator ⇒).
The judgement e  t / {C} states that JSL expression e is translated
into term t under the conjunction of constraints C.

variable(v)

v  v / {true}
constant(c)

c c / {true}

e1  t1 / {c1} . . . en  tn / {cn}
c e1 . . . en  c(t1, . . . , tn) / {c1, . . . , cn}

e1  t1 / {c1} . . . en  tn / {cn}
f e1 . . . en  r / {c1, . . . , cn, f(t1, . . . , tn, r)}

The judgement (e→ p) {C} states that the JSL rewriting rule e→ p

is translated into the conjunction of constraints {C}.

(v → p) {v = p}

e1  t1 / {c1} . . . en  tn / {cn} p p / {true}
(f e1 . . . en → p) {c1, . . . , cn, f(t1, . . . , tn, p)}

The judgement (l1 → r1, . . . , ln → rn ⇒ g → d)  g′ ⇔ guard|body
states that the JSL function rule l1 → r1, . . . , ln → rn ⇒ g → d is
translated into the CHR g′ ⇔ guard|body where g′ is a CHR constraint
associated to the expression g, guard is the conjunction of constraints



corresponding to the translation of the rules li → ri, and body is a con-
junction of constraints corresponding to the translation of the expression
d.

l1 → r1  g1 . . . ln → rn  gn e t / {B}
(l1 → r1, . . . , ln → rn ⇒ f v1 . . . vk → e)

 f(v1, . . . , vk, r)⇔ g1, . . . , gn|B, r = t.

Note that non-determinism, confluence and termination are preserved
by the translation as the operational semantics of CHRs extends the
execution model of JSL functions.

4.2 Deep guards

In the translation method, we considered that CHR guards could be
built over prolog goals and CHR calls. This approach, which is referred
to as deep guards, has received much attention by the past. See [9, 12]
for a detailed presentation of deep guards. Smolka recalls in [13] that
”deep guards constitute the central mechanism to combine processes
and (encapsulated) search for problem-solving”. Deep guards are used in
several systems such as AKL, Eclipse Prolog [7, 9], Oz [12] or HAL [11].
Deep guards rely on how guard entailment is tested in conditional con-
straints and CHRs. Technically, a guard entailment test is called an ”ask
constraint” whereas a constraint added to the constraint store is called a
”tell constraint” and both operations are clearly distinct. For example, if
the constraint store contains X = p(Z), Y = p(a) then a tell constraint
X = Y where = denotes Prolog unification, will result in the store
X = p(a), Y = p(a), Z = a whereas the corresponding ask constraint will
leave the store unchanged and will suspend until the constraint Z = a

would be entailed or disentailed.
The current approach to deal with deep guards that contain Prolog goals
(but not CHR calls) consists in considering guards as tell constraints
and checking at runtime that no guard variable is modified. This ap-
proach is based on the fact that the only way of constraining terms in
the Herbrand Universe is unification (=) and that the corresponding ask
constraint of unification is well-known: this is the “equality of terms”
test (==). For example, if X = Y is a tell constraint then X == Y

corresponds to its ask constraint. However, when Prolog goals are in-
volved into the guards, the guard entailment test is no more decidable
as non-terminating computations can arise. Note that CHR programs
are not guaranteed to terminate (consider for example p <=> true|p).
Even when non-terminating computations are avoided this approach can
be very inefficient as possible long term computations in guards are ex-
ecuted every time a CHR constraint is woken. An approach for this
problem consists in pre–computing the guard by executing the Prolog
goal only once, and then testing entailment on the guard variables.
When CHRs are involved into the guards, the problem is more difficult
as guards can set up constraints. In that case, considering guards as tell
constraints is no longer correct as wrong deductions can be made. Our
approach for this problem consists in suspending the guard entailment



test until it could be decided. More precisely, the guard entailment test is
delayed until all the guard variables become instantiated2. At worst, this
instantiation arises during the labelling process. Of course, this approach
leads to fewer deductions at propagation time but it remains manageable
when we have to deal with deep guards containing CHR calls.

4.3 Implementation of the translation method

We implemented the translation method into a library called JSL2CHR.pl.
Given a file containing JSL definitions, the library builds an abstract
syntax tree by using a Definite Clause Grammar of JSL, and then auto-
matically produces equivalent CHR rules. The library was used on the
JSL specifications of the JCVM, which is composed of 310 functions. As
a result, 1537 CHRs were generated.

5 Tests generation for the JCVM

This section is devoted to the presentation of both the JCVM speci-
fication model and the test cases and oracle generation method. The
experimental results we obtained by generating test cases for the JCVM
are presented in Section 5.3.

5.1 The Java Card Virtual Machine

Unlike other smart cards, a Java Card includes a Java Virtual Machine
implemented in its read-only memory part. The structure of a Java Card
platform is given in Fig.1. It consists of several components, such as a
runtime environment, an implementation of the Java Virtual Machine,
the open and global platform applications, a set of packages implement-
ing the standard SUN’s Java Card API and a set of proprietary APIs.
A Java Card program is called an applet and communicates with a card
reader through APDU3 buffers.
All the components of a Java Card platform must be thoroughly tested
before the Card would be released. But, in this paper, we concentrate
only on the JCVM functional testing process. In the formal model given
in [14], the JCVM is a state machine described by a small-step semantics:
each bytecode is formalised as a state transformer.

States modelling Each state contains all the elements manipulated
by a program during its execution: values, objects and an execution envi-
ronment for each called method. States are formalised as a record consist-
ing of a heap (he) which contains the objects created during execution,
a static heap (sh) which contains static fields of classes and a stack of
frames (fr) which contain the execution environments of methods. States
are tagged “Abnormal” if an exception (or an error) is raised, “Normal”
otherwise.

2 This solution is close to the traditional techniques of coroutining in Prolog as im-
plemented by freeze or delay built-in predicates.

3 Application Protocol Data Unit is an ISO-normalised communication format be-
tween the card and the off-card applications.



Bytecodes modelling The JCVM contains 185 distinct bytecodes
which can be classified into the following classes[15]: arithmetic opera-
tions (sadd, idiv, sshr, ...), type verifications on objects (instanceof,
...), (conditional) branching (ifcmp, goto, ...), method calls (invokestatic,
invokevirtual, ...), operations on local variables (iload, sstore, ...),
operations on objects (getfield, newarray, ...), operations on operands
stack (ipush, pop, ...) and flow modifiers (sreturn, throw, ...).

Most of the bytecodes have a similar execution scheme: to decompose
the current state, to get components of the state, to perform tests in
order to detect execution errors then to build the next state. In the
JSL formal model of the JCVM, several bytecodes are specified with the
similar JSL functions. They only distinguish by their type which is em-
bodied in the JSL function definition as a parameter. As a result, the
model contains only 45 distinct JSL functions associated to the byte-
codes. Remaining functions are auxiliary functions that perform various
computations. Some JSL functions calls other functions in their rewriting
rules; this process is modelled by using deep guards in CHR, preserving
so the operational semantics of the JCVM.

Example of a JSL bytecode specification As an example, con-
sider the JSL specification of bytecode push: given a primary type t, a
value x and a JCVM state st, push updates the operand stack of the first
execution method environment in st by adding the value x of type t:
function push :=
〈push r1〉 (stack f st)→ Nil

⇒ (push t x st)→ (abortCode State error st);
〈push r2〉 (stack f st)→ (Cons h lf)
⇒ (push t x st)→ (update frame(result push t x h) st).

push uses the auxiliary function stack f that returns the stack of frames
(environments for executing methods) of a given state.
function stack f :=
〈stack f r1〉 st→ (Jcvm state sh he fr)⇒ (stack f st)→ fr.

Example of CHR generated for a bytecode The following
CHRs were produced by the library JSL2CHR.pl:

stack f r1 @ stack f(St,R) <=> St=jcvm state(Sh,He,Fr)

| R=Fr.

push r1 @ push(T,X,St,R) <=> stack f(St,nil)

| abortCode(state error(St),Ra), R=Ra.

push r2 @ push(T,X,St,R) <=> stack f(St,cons(H,Lf))

| result push(T,X,H,Res), update frame(Res,St,Ru), R=Ru.

In this example, the JSL function stack f was translated into a CHR
although it is only an accessor. As a consequence we get a deep guard
in the definition of CHR push. This could be easily optimised by identi-
fying the accessors into the JSL specification with the help of the user.
However, we would like the approach to remain fully automated hence
we did not realized this improvement and maintained the deep guards.
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JavaCard Runtime Environment (JCRE)

JavaCard Virtual Machine

Open Plateform

Fig. 1. A Java Card platform

5.2 Test cases and oracles generation method

Our approach is inspired of classical functional testing where test cases
are generated according to some coverage criteria. We proposed to gen-
erate test cases that ensure each CHR would be covered at least once
during the selection. We call this criterion All rules. Note that this ap-
proach is based on two usual assumptions, namely the correctness of the
formal specification and the uniformity hypothesis[1]. The uniformity hy-
pothesis says that if a rule provides a correct answer for a single test case
then it will provide correct answers for all the test cases that activate
the rule. Of course, this assumption is strong and nothing can prevent
it to be violated but recall that testing can only detect faults within an
implementation and cannot prove the correctness of the implementation
(as stated by Prof. E. Dijkstra).

Abstract test cases In the JSL formal model of the JCVM, a test
case consists of a fully instantiated state of the VM and the valuation of
several input parameters. However, it happens that several values of the
state or several parameter values remain useless when testing a selected
bytecode. To deal with these situations, the notion of abstract test case
is used. In our case, an abstract test case represents a class of test cases
that activate a given JSL function or equivalently a given CHR. The pro-
cess which consists to instantiate an abstract test case to actually test
an implementation is called concretization [2] and can be delayed until
the test-execution time. For each CHR automatically generated, the goal
is to find a minimal substitution of the variables (an abstract test case)
that activate it. Covering a CHR consists in finding input values such
as its guard would be satisfied. Hence, a constrained search process over
the guards and the possible substitutions is performed. Before going to
more details into this process, consider the CHRs of bytecode push. To
activate push r1, the states stack St must be empty whereas to activate
push r2, St must be rewritten into cons H Lf (i.e. to posses at least one



frame). Note that H,Lf, T and X are not constrained and do not require
to be instantiated in the abstract test case. However, a randomised la-
belling can be used and to generate the two following concrete test cases,
written under the form of JSL expressions4:
(Bool, POS(XI(XO(XH))), Jcvm state(Nil,Nil, Nil)) and
(Byte,NEG(XH), Jcvm state(Nil,Nil, Cons(Frame(Nil, Nil, S(S(0)),
Package(0, S(0), Nil), T rue, S(0)), Nil))).

A constrained search process over the guards As usual in
constraint programming, we would like to see the constraints playing an
active role by exploiting the relations before labelling (test-and-generate
approach). Note that this contrasts with classical functional testing tech-
niques that usually instantiate first the variables and then check if they
satisfy the requirements (generate-and-test approach).
Consider a CHR r : H ⇔ G|B where G = p1, . . . , pn. Satisfying the guard
G requires to satisfy at least one guard of the CHRs that define each
predicate pi of G, i.e. finding a valuation such as pi is simplified either
in true or in a consistent conjunction of equalities. When pi himself is
a CHR call (deep guards), then its guard and body are also required to
be consistent with the rest of the constraints. According to the All rules
testing criterion, the constraint store takes the following form:

^

i

 

_

j

(guard(pi, j) ∧ body(pi, j))

!

where guard(pi, j) (resp. body(pi, j)) denotes the guard (resp. body) of
the jth rule defining pi. Any solution of this constraint store can be
interpreted as a test case that activates the CHR under test. Finding a
solution to this constraint store leads to explore a possibly infinite search
tree, as recursive or mutually recursive CHR are allowed. However, a
simple occur-check test permits to avoid such problems. In this work,
we followed a heuristic which consists to select first the guard with the
easier guard to satisfy. A guard was considered easier to satisfy than
another when it contains a smaller number of deep guards. The idea
behind this heuristic is to avoid the complex case during the generation.
This approach is debatable as these complex cases may contain the more
subtle faults. See section 5.3 for a discussion on possible improvements.
Note that the constraint store consistency is checked before going into
a next branch, hence constraints allows pruning the search tree before
making a choice. Note also that the test case generation process requires
only to find a single solution and not all solutions, hence a breath-first
search could be performed to avoid infinite derivations.

Oracles generation As the CHR specification of the JCVM is ex-
ecutable and the formal model is supposed to be correct, oracles can
be generated just by interpreting the CHR program with generated test
cases. For example, the following request gives us the oracle for the test

4 Jcvm state, Frame, Package, XI, X0, XH, POS, Byte, NEG, Bool and True

are JSL constructor symbols given in the JCVM formal model.



case generated for push r1:
?- push(bool,pOS(xI(xO(xH))),jcvm state(nil,nil,nil)),R).

R=abnormal(jCVMError(eCode(state error)),jcvm state(nil,nil,nil))

Providentially, oracles can also be derived for abstract test cases. For
example, oracle for abstract test case of push r1 is computed by the fol-
lowing request: ?- push(T,X,jcvm state(Sh,He,nil)),R).

R=abnormal(jCVMError(eCode(state error)),jcvm state(Sh,He,nil))

When delayed goals are present, a labelling process must be launched to
avoid suspension. For example, the following request obtained by using
the generated abstract test cases for push r2:
?- push(T,X,jcvm state(Sh,He,cons(H,Lf))),R).

T=T, X=X, Sh=Sh, He=He, H=H, Lf=Lf, R=R

Delayed goals: push(T,X,jcvm state(Sh,He,cons(H,Lf)),R)

requires R to be unified to cons( X, S) to wake up the suspended goal.
The labelling process can be based on deterministic or randomised[16]
labelling strategies. In software testing approaches, random selection is
usually preferred as it improves the flaws detection capacity. The sim-
plest approach consists in generating terms based on a uniform distri-
bution. Lot of works have been carried out to address the problem of
uniform generation of terms and are related to the random generation
of combinatorial structures [17]. In a previous work [18], we proposed a
uniform random test cases generation technique based on combinatorial
structures designs.

5.3 Experimental results

As previously said, the library JSL2CHR.pl generated 1537 CHRs that
specify 45 JCVM bytecodes. The library generates a CHR program that
is compiled by using the ech library of Eclipse Prolog [7]. We present
the experimental results we obtained by generating abstract test cases
for covering all the 443 CHRs associated to the bytecodes of the JCVM.
These results were obtained on an Intel Pentium M at 2GHz with 1GB
of RAM under Linux Redhat 2.6 The full process of generation of the
abstract test cases for the 45 bytecodes (443 test cases) took 3.4s of CPU
time and 47 Mbytes as the global stack size, 0.3 Mbytes as the local stack
size and 2.6 Mbytes as the trail stack size. The detailed results for each
bytecode are given in Tab.1, ordered by increasing number of abstract
test cases (second column). Tab.1 contains the stack sizes as well as the
CPU time (excluding time spent in garbage collection and system calls)
required for the generation.

Analysis and discussion The approach ensures the coverage of each
rule of the JSL bytecodes in a very short period of CPU time. The global
and trail stacks remain stable whereas the local stack size increases with
the number of test cases. A possible explanation is that some CHRs
exit non-deterministically and allocation of variables cannot be undone
in this case. We implemented a heuristic which consists to favour the
CHRs that contain the smallest number of deep guards. This heuristic
behaves well as shown by the short CPU time required for the bytecodes



Name #tc global stack
(bytes)

local stack
(bytes)

trail stack
(bytes)

runtime (ms)

aload 1 33976048 148 1307064 0
arraylength 1 33849512 148 1299504 0
astore 1 33945864 148 1306660 0
invokestatic 1 33849512 148 1299504 0
nop 1 33945864 148 1306660 0
aconstnull 2 33854760 424 1300336 0
goto 2 33951112 424 1307492 0
jsr 2 33951112 424 1307492 0
push 2 33951112 424 1307492 0
conv 3 34055304 1076 1315924 10
dup 3 33972696 992 1310252 0
getfield 3 33876344 992 1303096 10
getfield this 3 33876344 992 1303096 0
neg 3 34055304 1076 1315924 11
new 3 33971904 1020 1309932 11
pop 3 33972152 992 1310156 0
pop2 3 34074480 1076 1317828 0
putfield 3 33885840 1076 1303944 0
putfield this 3 33876344 992 1303096 0
dup2 4 34122280 1884 1322772 10
swap 4 34029448 1884 1315948 11
ifnull 5 34023088 2216 1315392 10
ifnonnull 5 33926736 2216 1308236 10
icmp 6 34409440 3480 1343428 50
if acmp cond 6 34012528 3624 1316892 20
const 7 33968512 1512 1309716 0
invokespecial 7 34027448 4020 1317168 20
if cond 8 34047496 3772 1319316 10
ret 8 34059064 3940 1320780 11
invokevirtual 9 34432272 7632 1349576 60
arith 11 33948080 836 1306660 0
athrow 11 34596760 7648 1364512 90
invokeinterface 11 35007240 12104 1394104 120
newarray 13 34073536 7604 1325612 20
return 13 34889544 11448 1386532 91
if scmp cond 14 34349752 11004 1351220 49
inc 18 34305392 9568 1344628 29
lookupswitch 18 34117768 9548 1332008 29
tableswitch 18 34117768 9548 1332008 31
load 19 34263232 11672 1343060 30
store 25 34752536 20108 1390876 81
checkcast 30 35053520 21384 1419380 280
getstatic 33 34408808 20652 1360596 60
putstatic 34 34944800 28660 1416196 120
instanceof 62 36468800 46964 1555588 580

Table 1. Memory and CPU runtime measures for each bytecode



that are specified with a lot of CHRs (instanceof is specified with 62
CHRs and only 0.6s of CPU time is required to generate the 62 abstract
test cases). However, most of the time, this heuristic leads to generate
test cases that put the JCVM into an abnormal state. In fact, in the
JSL specification of the JCVM the abnormal states can often be reached
by corrupting an input parameter. As a consequence, they are easy to
reach. Although this heuristic is suitable to reach our test purpose (cov-
ering All rules) and corresponds to some specific testing criterion such
as Test all corrupting input , it is debatable because it does not repre-
sent the general behaviour. Other approaches, which could lead to better
test cases, need to be studied and evaluated. For example, selecting first
the guard that contains the greatest number of deep guards could lead
to build test cases that activate interesting parts of the specification. Fi-
nally, in these experiments, we only generated abstract test cases and did
not evaluate the time required in the concretization step. Although, this
step does not introduce research problems, considering it would allow to
get a more accurate picture of test case and oracle generation with CHR.
Thus, we could evaluate the efficiency of our approach and compare it
to existing techniques.

6 Related Work

Bernot and al. [1] pioneered the use of Logic Programming to construct a
test set from a formal specification. Starting from an algebraic specifica-
tion, the test cases were selected using Horn clauses Logic. More recently,
Gotlieb and al. [19] proposed to generate test sets for structural testing of
C programs by using Constraint Logic Programming over finite domains.
Given the source code of a program, a semantically-equivalent constraint
logic program was built and questioned to find test data that cover a se-
lected testing criterion. Legeard and al.[2] proposed a method for func-
tional boundary testing from B and Z formal specifications based on set
constraint solving techniques (CLP(S)). They applied the approach to
the transaction mechanism of Java Card that was formally specified in B.
Test cases were only derived to activate the boundary states of the spec-
ification of the transaction mechanism. Only Lötzbeyer and Pretschner
[20, 21] proposed a software testing technique that uses CHR constraint
solving. In this work, models are finite state automata describing the be-
haviour of the system under test and test cases are composed of sequence
of input/output events. CHR is used to define new constraint solvers and
permits to generate complex data types. Our work distinguishes by the
systematic translation of formal specifications into CHRs. Our approach
does not restrict the form of guards in CHR and appears so as more
declarative to generate test cases.



7 Conclusion

In this paper, we have proposed to use the CHRs to generate functional
test cases for a JCVM implementation. A JSL formal specification of the
JCVM has been automatically translated into a CHR program and a test
cases and oracles generation process has been proposed. The method
permits to generate 443 test cases to test the 45 bytecodes formally
specified. This result shows that the proposed approach scales up to a
real-world example.
However, as discussed previously, other approaches need to be explored
and evaluated. In particular, the coverage criterion All rules initially se-
lected appears as being too restrictive and other testing criteria could
be advantageously used. Moreover, the test concretization step need to
be studied in order to compare the efficiency of our approach against
existing methods.
Finally, the key point of the approach resides in the use of deep guards,
although their treatment needs to be evaluated both from the analytic
and the experimental points of view.
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