
Association
for

Logic Programming
Newsletter

Vol. 21, No. 1
February/March, 2008

Untitled Document http://www.cs.nmsu.edu/~epontell/backbone/February08/toc.php

1 of 1 3/28/2008 1:22 PM

Contents
Vol. 21 n. 1, February/March 2008

Editorial, by Enrico Pontelli

Feature Articles:

International Conference on Logic Programming 2008, by A. Dovier, M. Garcia de la Banda, E.
Pontelli
Summer School in Logic Programming, by I. Pivkina and E. Pontelli
Intelligent Systems Laboratory, by Yan Zhang
Lazy Chickens in Grids and Cubes, by P. Baldan and R. Bruni
ALP Elections, by ALP EC

Historical and Personal Perspectives on LP

My Life as a Prolog Implementor, by Bart Demoen

LP Systems Spotlight

The SWI-Prolog Environment, by Jan Wielemaker

Regular Columns

Doctoral Dissertations in LP, by Enrico Pontelli
Report from the ALP Executive Committee, by D. Warren, M. Garcia de la Banda
Community News, by Enrico Pontelli
Call for Papers, by Enrico Pontelli
TPLP and TOCL Accepted Papers, by Enrico Pontelli
Conferences Accepted Papers, by Enrico Pontelli
NetTalk, by Roberto Bagnara

FEATURED

ARTICLES

Vol. 21 No. 1

February/March 2008

International Conference on Logic Programming 2008 http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Articles...

1 of 5 3/28/2008 1:24 PM

International Conference on Logic Programming
2008!

A. Dovier, M. Garcia de la Banda, E.
Pontelli

University of Udine, Italy
Monash University, Australia

New Mexico State University, USA

Editor: Enrico Pontelli

Download: POSTER
URL: http://iclp08.dimi.uniud.it/
Location: Udine, Italy
Date: December 9-13, 2008

CONFERENCE SCOPE
Since the first conference held in Marseilles in 1982, ICLP has been the premier
international conference for presenting research in logic programming. Contributions
(papers, position papers, and posters) are sought in all areas of logic programming
including but not restricted to:

Theory: Semantic Foundations, Formalisms, Nonmonotonic Reasoning,
Knowledge Representation.

Implementation: Compilation, Memory Management, Virtual Machines,
Parallelism.

Environments: Program Analysis, Program Transformation, Validation
and Verification, Debugging, Profiling, Integration.

Language Issues: Extensions, Integration with Other Paradigms,
Concurrency, Modularity, Objects, Coordination, Mobility, Higher Order, Types,
Modes, Programming Techniques.

Related Paradigms: Abductive Logic Programming, Inductive Logic
Programming, Constraint Logic Programming, Answer-Set Programming.

Applications: Databases, Data Integration and Federation,
Software Engineering, Natural Language Processing, Web and Semantic
Web, Agents, Artificial Intelligence, Bioinformatics

The three broad categories for submissions are:

Technical papers, providing novel research contributions, innovative
perspectives on the field, and/or novel integrations across different areas;

1.

International Conference on Logic Programming 2008 http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Articles...

2 of 5 3/28/2008 1:24 PM

Application papers, describing innovative uses of logic
programming technology in real-world application domains;

2.

Posters, ideal for presenting and discussing current work, not yet ready for
publication, for PhD thesis summaries and research project overviews.

3.

A separate session dedicated to the celebration of the 20th anniversary of stable
model semantics will also be part of the program.
Accepted papers and posters will be allocated time for presentation during the
conference. At least one author of each accepted submission is expected to register
and participate in the event.

In addition to papers and posters, the technical program will include invited talks,
advanced tutorials, specialized sessions, workshops, and a Doctoral Student
Consortium. Details, as they become available will be posted at:

 http://iclp08.dimi.uniud.it

PAPERS AND POSTERS
Papers and posters must describe original, previously unpublished research, and must
not be simultaneously submitted for publication elsewhere. Emphasis will be placed
on the novelty and innovative nature of the results (even if not completely polished
and refined). All submissions will be peer-reviewed by an international panel.
Submissions MUST contain substantial original, unpublished material. All
submissions must be written in English. Technical papers and application papers
must not exceed 15 pages in the Springer LNCS format (see
http://www.springeronline.com/lncs/)
The limit for posters is 5 pages in the same format.
The primary means of submission will be electronic, through the Easychair
submission system. The submission page is available at

 http://www.easychair.org/conferences/?conf=ICLP08

PUBLICATION
The proceedings of the conference will be published by Springer-Verlag in the LNCS
series. All accepted papers and posters will be included in the proceedings.

WORKSHOPS
The ICLP'08 program will include several workshops. They are perhaps the best
place for the presentation of preliminary work, novel ideas, and new open
problems to a more focused and specialized audience. Workshops also provide a
venue for presenting specialised topics and opportunities for intensive
discussions and project collaboration in any areas related to logic
programming, including cross-disciplinary areas.

DOCTORAL CONSORTIUM
The Doctoral Consortium (DC) on Logic Programming is the 4th Doctoral
consortium to provide doctoral students with the opportunity to present and discuss
their research directions, and to obtain feedback from both peers and word-renown
experts in the field. The DC will also offer invited speakers and panel discussions.
Accepted participants will receive partial financial support to attend the event and the
main conference. The best paper and presentation from the DC will be given the

International Conference on Logic Programming 2008 http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Articles...

3 of 5 3/28/2008 1:24 PM

opportunity to present in special session of the main ICLP conference.

CELEBRATING 20 YEARS OF STABLE MODEL SEMANTICS
The year 2008 marks the 20th anniversary of the publication that introduced the stable
model semantics for logic programs with negation. The paper titled "The stable
semantics for logic programs" by Michael Gelfond and Vladimir Lifschitz was
presented at ICLP-1988. It was a momentous event that gave rise to a vibrant
subfield of logic programming known now as the answer-set programming. Its
distinguishing aspects are close connections to the fields of knowledge
representation, satisfiability and constraint satisfaction, ever faster computational
tools, and a growing list of successful applications.

To celebrate the stable-model semantics, there will be a special session at ICLP
2008 dedicated to answer-set programming. The session will feature talks by Michael
Gelfond and Vladimir Lifschitz. as well as by other major contributions to the
field, presenting personal perspectives on the stable-model semantics, its impact
and its future. There will be a panel discussion, and regular accepted ICLP
papers falling into the answer-set programming area will complete the program.

CONFERENCE VENUE
The conference will be held in the city of Udine, the capital of the historical region of
Friuli, Italy. Located between the Adriatic sea and the Alps, close to Venice, Austria
and Slovenia, Udine is a city of Roman origins, funded by Emperor Otto in 983. Rich
of historical sites, Udine is also famous for its commercial and shopping
opportunities and its outstanding wine and culinary traditions.

SUPPORT SPONSORING AND AWARDS
The conference is sponsored by the Association for Logic Programming (ALP). The
ALP has funds to assist financially disadvantaged participants. The ALP is planning
to sponsor two awards for ICLP 2008: for the best technical paper and for the best
student paper.

IMPORTANT DATES
PAPERS POSTERS

Abstract Submissions June 2nd n/a

Submission Deadline June 9th August 15th

Notifications August 1st September 1st

Camera-ready September 15th September 15th

Doctoral Consortium TBA

Workshop Proposals June 2nd

Early-bird Registrations TBA

ICLP'2008 ORGANIZATION

General Chair: Agostino Dovier (University of Udine)

Program Co-Chairs:
 Maria Garcia de la Banda (Monash University)

International Conference on Logic Programming 2008 http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Articles...

4 of 5 3/28/2008 1:24 PM

 Enrico Pontelli (New Mexico State University)

Workshop Chair: Tran Cao Son (New Mexico State University)

Doctoral Student Consortium:
 David Warren (SUNY Stony Brook)
 Tom Schrijvers (K.U.Leuven)

Publicity Co-Chairs:
 Marcello Balduccini (Kodak Research Labs)
 Alessandro Dal Palu' (University of Parma)

Programming Competition Chair: Bart Demoen (K.U.Leuven)

20 Years of Stable Models:
 Mirek Truszczynski (University of Kentucky)
 Andrea Formisano (University of Perugia)

Program Committee:
 Salvador Abreu
 Sergio Antoy
 Pedro Barahona
 Chitta Baral
 Gerhard Brewka
 Manuel Carro
 Michael Codish
 Alessandro Dal Palu'
 Bart Demoen
 Agostino Dovier
 John Gallagher
 Michael Gelfond
 Carmen Gervet
 Gopal Gupta
 Manuel Hermenegildo
 Andy King
 Michael Maher
 Juan Moreno Navarro
 Alberto Pettorossi
 Brigitte Pientka
 Gianfranco Rossi
 Fariba Sadri
 Vitor Santos Costa
 Tran Cao Son
 Paolo Torroni
 Frank Valencia
 Mark Wallace

Web Master:
 Raffaele Cipriano

Local Arrangements Committee:
 Alberto Casagrande

International Conference on Logic Programming 2008 http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Articles...

5 of 5 3/28/2008 1:24 PM

 Elisabetta De Maria
 Luca Di Gaspero
 Carla Piazza

Summer School in Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

1 of 2 3/28/2008 1:24 PM

2008 Summer School
in

Logic Programming and Computational Logic

Inna Pivkina and Enrico Pontelli
New Mexico State University

USA

Editor: Enrico Pontelli

URL: http://www.cs.nmsu.edu/~ipivkina/compulog.htm
Date: July 24-27, 2008
Location: Las Cruces, New Mexico, USA

The third international summer school in Logic Programming and Computation Logic
will be held on the campus of New Mexico State University in beautiful Las Cruces,
New Mexico.
The summer school is intended for graduate students, post-doctoral students, young
researchers, and programmers interested in constraints, logic programming,
computational logic and their applications. The lectures will be given by internationally
 renowned researchers who have made significant contributions to the
advancement of these disciplines. The summer school is a good opportunity for
quickly acquiring background knowledge on important areas of computational logic.
The summer school is especially directed to Ph.D. students who are just about to start
research, post-doctoral students interested in entering a new area of research, and
young researchers (e.g., assistant professors). Exceptional undergraduate students in
their senior year are also encouraged to attend.

The summer school will consist of six 1/2 day tutorials on the following topics:

Theoretical Foundations of Logic Programming [Miroslaw Truszczynski, U. of
Kentucky]
Answer Set Programming [Torsten Schaub, U. of Potsdam]
Implementation and Execution Models for Logic Programming [Manuel
Hermenegildo, Polytechnic Univ. of Madrid]
Logic Programming and Multi-agent Systems [Francesca Toni, Imperial College]
Foundations of Constraint and Constraint Logic Programming [Brent Venable,
University of Padova]
Foundations of Semantic Web and Computational Logic [Sheila McIlraith,
University of Toronto]

Registration
Due to the limit on the number of slots available, we invite interested student to submit
an application for admission to the summer school composed of the following items:

a one page statement of interest, explaining your research background and what1.

Summer School in Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

2 of 2 3/28/2008 1:24 PM

you expect to gain from the summer school
a short (2-page) vitae2.

Applications should be submitted in electronic form to:

 epontell AT cs.nmsu.edu and ipivkina AT cs.nmsu.edu

All submissions will be acknowledged with an email. If you do not receive
acknowledgement within 3 working days, please email Enrico Pontelli (epontell AT
cs.nmsu.edu).

Student grants
The school is free of charge for all admitted applicants. We will also provide lunches to
all participants for the duration of the summer school. Several different types of grants
will be available to offset partially or totally the travel and lodging costs.

IMPORTANT: Thanks to the joint support of the Computing Research Association
Committee on the Status of Women in Computing Research and the Coalition to
Diversify Computing, we have *several full scholarships* (i.e., travel and lodging)
 for MINORITY and WOMEN applicants. Please contact the organizers for further
information.

Partial grants covering lodging and meals will be provided to other selected participants
who requests them. Students who wish to request a grant should contact via
email Enrico Pontelli (epontell AT cs.nmsu.edu) motivating the request.

Lodging
Lodging will be available at local hotels; we will also provide a number of affordable
accomodations on the NMSU campus.

Important dates
Requests for student grants: April 19, 2008;
Application for Admission: April 27, 2008;
Notification of Admission and grants: May 5th, 2008;
Summer School: July 24-27, 2008

Local Organizers
 * Enrico Pontelli, New Mexico State University, USA
 * Inna Pivkina, New Mexico State University, USA
 * Karen Villaverde, New Mexico State University, USA
 * Son Cao Tran, New Mexico State University, USA

Intelligent Systems Laboratory http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

1 of 4 3/28/2008 1:25 PM

Intelligent Systems Laboratory (ISL)

Yan Zhang
School of Computing and Mathematics

University of Western Sydney
Australia

Editor: Son Cao Tran

About the Laboratory
Intelligent Systems Lab (ISL) comprising academic staff, research fellows and
postgraduate students from the School of Computing and Mathematics, the University
of Western Sydney, Australia. ISL members share research interests in computational
intelligence, software development and computer security. It is the objective of ISL to
undertake excellent research in these areas and their fundamental common grounds.

Currently, ISL has four academic staff, three postdoc research fellows, and six
Honours and postgraduate research students. Part of ISL's culture consists in the
continuing links with external researchers and groups. Each year, ISL will host a
number of international researchers to visit ISL and exchange research ideas with
them. ISL has also remained regularly mutual visits with researchers in Germany,
Hong Kong - China, and USA.

ISL Recent Research Projects

A World View Solver for Epistemic Logic Programs
The world view semantics for epistemic logic program was proposed by Gelfond in his
1994 paper "Logic programming and reasoning with incomplete information" (Annals of
Mathematics and Artificial Intelligence, 12 (1994) 98-116). It extends the answer set
semantics for disjunctive logic programs and allows the reasoning with the agent's
beliefs and knowledge.

We have implemented a prototype called Wviews that computes the world views for a
given epistemic logic program. Wviews works in the following way: it takes an
epistemic logic program as input, then guesses an epistemic valuation for all subjective
literals occurring in the program and transform the input program to an extended
disjunctiv logic program. Finally, by calling dlv, Wviews computes all answer sets of
this extended disjunctive logic program and verify whether the collection of these
answer sets is a world view of the input epistemic logic program. Many detailed
optimization methods have been implmented in order to prune the search space.

Wviews now can be downloaded from:
http://www.scm.uws.edu.au/~yan/Wviews.html

Theory of Forgetting in Logic Programs
In this project, we consider how to forget a set of atoms in a logic program. Intuitively,

Intelligent Systems Laboratory http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

2 of 4 3/28/2008 1:25 PM

when a set of atoms is forgotten from a logic program, all atoms in the set should be
eliminated from this program in some way, and other atoms related to them in the
program might also be affected. We define notions of strong and weak forgettings in
logic programs to capture such intuition, reveal their close connections to the notion of
forgetting in classical propositional theories, and provide a precise semantic
characterization for them. Based on these notions, we then develop a general
framework for conflict solving in logic programs. We investigate various semantic
properties and features in relation to strong and weak forgettings and conflict solving in
the proposed framework. We argue that many important conflict solving problems can
be represented within this framework. In particular, we show that all major logic
program update approaches can be transformed into our framework, under which
each approach becomes a specific conflict solving case with certain constraints.

Relevant publications are as follows:

Y. Zhang and N.Y. Foo, Solving logic program conflict through strong and weak
forgettings. Artificial Intelligence (AIJ). 170 (2006) 739-778.
Y. Zhang and N.Y. Foo, A unified framework for representing logic program
updates. In Proceedings of the 20th National Conference on Artificial Intelligence
 (AAAI 2005), pp 707-712. AAAI Press 2005.
Y. Zhang, N.Y. Foo and K. Wang, Solving logic program conflicts through strong
and weak forgettings. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005), pp 627-632. Morgan Kaufmann Publishers,
Inc. 2005.

Bargaining Theory and Automated Negotiation:
Bargaining is a traditional research topic in economics initiated by John Nash in 1950.
We explore the theme from AI point of view by modelling reasoning behind bargaining
processes. We express bargaining situations in logical form and model bargaining
games with a combinatorial form of belief revision and game theory. We have
proposed a logic solution to the bargaining problem, which has a sound and complete
axiomatic characterization. Such an axiomatization is a combination of belief revision
postulates and game theoretic axioms. We have also proposed a set of other
logic-based solutions to deal with ordinal bargaining and bargaining with mixed deals.
The whole framework initiates a new methodology of bargaining analysis and would
help us to identify the logical reasoning behind bargaining processes

Relevant publications are as follows:

D. Zhang, Reasoning about bargaining situations. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI-07), 154-159, 2007.
Y. Jin, M. Thielscher and D. Zhang, Mutual belief revision: semantics and
computation. In Proceedings of the 22nd AAAI Conference on Artificial
Intelligence (AAAI-07), 440-445, 2007.
D. Zhang and Y. Zhang, A computational model of logic-based negotiation. In
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06),
728-733, 2006.
D. Zhang, A logical model for Nash bargaining solution. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05),
983-988, 2005.

Intelligent Systems Laboratory http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

3 of 4 3/28/2008 1:25 PM

jackaroo Trading Agent System
Trading agent design and analysis has been one of the main research interests in ISL
since 2003. We have built a trading agent system, named jackaroo, which participated
in the International Trading Agent Competitions (TAC) in last five years. The agent is
built upon the economic model of TAC markets and initiated the approach of
equilibrium analysis to strategic trading agents. Jackaroo agent has achieved
significant results in previous TAC games: the 4th place in TAC-07 CAT final, the 11th
in TAC-06 SCM final, the 2nd place in TAC-05 SCM qualifying, the 1st place in TAC-05
SCM qualifying and the 3rd place in TAC-03 SCM qualifying.

Relevant publications are as follows:

M. Furuhata and D. Zhang, Capacity allocation with competitive retailers. In
Proceedings of the Eighth International Conference on Electronic Commerce
(ICEC-06), 31-37, 2006.
D. Zhang, Negotiation mechanism for TAC SCM component market. In
Proceedings of the 4th International Conference on Autonomous Agent and
Multiagent Systems(AAMAS-05), 288-295, 2005.
D. Zhang, K. Zhao, C-M. Liang, G. Begum, and T-H. Huang, Strategic trading
agents via market modelling, ACM SIGecom Exchange,4(3), 46-55, 2004.

Model Update for System Modifications
Model checking is a promising technology, which has been applied for verification of
many hardware and software systems. In this paper, we introduce the concept of
model update towards the development of an automatic system modification tool that
extends model checking functions. We define primitive update operations on
the models of Computation Tree Logic (CTL) and formalize the principle of minimal
change for CTL model update. These primitive update operations, together with the
underlying minimal change principle, serve as the foundation for CTL model update.
Essential semantic and computational characterizations are provided for our CTL
model update approach. We then describe a formal algorithm that implements this
approach. We also illustrate two case studies of CTL model updates for the
well-known microwave oven example and the Andrew File System 1, from which we
further propose a method to optimize the update results in complex system
modifications.

Relevant publications are as follows:

Y. Zhang and Y. Ding, CTL model update for system modifications. Journal of
Artificial Intelligence Research (JAIR) 31 (2008) 113-155.
Y. Ding and Y. Zhang, CTL model update: Semantics, computations and
implementation. In Proceedings of the 17th Europen Conference on Artificial
 Intelligence (ECAI 2006), pp 362-366. IOS Press 2006.
Y. Ding and Y. Zhang, A case study for CTL model update. In Proceedings of the
 1st International Conference on Knowledge Systems, Engineering and
 Management (KSEM 2006), pp 88-101. Springer 2006.

ISL Contact
For more information, please visit ISL web site:

Intelligent Systems Laboratory http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

4 of 4 3/28/2008 1:25 PM

http://www.scm.uws.edu.au/research/isl/

Contact: Prof Yan Zhang
 Email: yan AT scm.uws.edu.au
 http://www.scm.uws.edu.au/~yan/

Lazy Chickens in Grids and Cubes

Paolo Baldan

Department of Pure and Applied Mathematics

University of Padova

Roberto Bruni

Computer Science Department

University of Pisa

Dr. Egghead, after a long and brilliant scientific career, retired to his birth
town, where he now runs a small farm. There he raises a strange breed of
chickens, called lazy chickens, that originated from some secret experimentation
conducted in his past life, when he was working on genetic manipulation. Lazy
chickens would produce very tasty eggs, but unfortunately they are characterised
by a tremendous laziness that forces them to sleep all daytime!

After some experiments, Dr. Egghead discovers how to get some eggs from
lazy chickens. In fact, he realises that the presence of regular active chickens, can
trigger some spirit of emulation in lazy chickens which thus start being active
and producting eggs! He prepares a 8 × 8 grid of small cages, with a single
chicken per cage and finds out that whenever a lazy chicken has two adjacent
(in the sense of sharing cage sides) active chickens, then it also becomes active
and it starts influencing lazy neighbours as well.

Q1: What is the least number of regular active chickens that Dr. Egghead must

insert in the cages of the 8×8 grid to make all chickens in the grid active? More

generally, what is the solution for a generic n × n grid?

As the production increases and business improves, Dr. Egghead decides to
assemble the cages to form a 8 × 8× 8 cube. This time, he finds out that three
active neighbours are necessary to win laziness (two do not suffice anymore).

Q2: What is the least number of regular active chickens that Dr. Egghead must

insert in the cages of the 8× 8× 8 cube to make all chickens in the cube active?

More generally, what is the solution for a generic n × n × n cube?

1

Solutions

Q1: It is very easy to find a solution that involves 8 regular active chickens,
e.g. placed along the main diagonal. The tricky part is to prove that 7 are not
enough.

The proof of minimality can be constructed by exploiting a suitable invariant
on the sides of the cages. Call a side of the cage of an active chicken mixed if it
is not shared with another active chicken (i.e., it is shared with a lazy chicken
or it is on the perimeter of the grid). We would like to reach a state of the
grid where all chickens are active and thus there are exactly 8 · 4 = 32 mixed
sides (i.e., all and only those on the perimeter). Now, it is immediate to check
that each transformation of a lazy chicken into an active one cannot increase
the number of mixed sides. But then, if we start with just 7 chickens, even if
we place them in pairwise non-adjacent cages, the maximum number of mixed
sides that we can have is 7 · 4 = 28.

The solution easily generalizes to a n×n grid by noticing that placing regular
active chickens along the diagonal gives a solution with n chickens and that if
we start with just n − 1 chickens then we can expect (n − 1) · 4 mixed sides at
most, as opposed to the 4 · n arising along the perimeter when all chickens are
active.

Q2: In this case the difficulties are reversed. By analogy with the grid case
and exploiting a similar invariant, we can prove that at least 82 = 64 regular
active chickens are needed (because at the end we expect 82 ·6 mixed sides, those
on the faces of the cube, and each active chicken can provide 6 mixed sides at
most, when placed in a cage adjacent to lazy chickens only). However finding
how to place them in the cube is more challenging.

This time we find convenient to define the solving scheme directly for the
n× n× n case (where n2 cages are needed). Let us call ci,j,k the cage at level i

from top, position j from left, and depth k from the front face of the cube (each
index ranging from 0 to n− 1). Then, we claim that a solution with exactly n2

regular active chickens is obtained by placing them in the cages ci,j,k such that
(j + k)modn = i. This corresponds to fill the diagonal of the bottom level and
then to shift the placing by one position to the left (circularly) as we move one
level up. The solution for n = 5 is depicted below, where the red cages (dark
grey, if printed in black&white) represent active chickens.

2

We prove that this is actually a solution with an inductive reasoning. The
base case n = 1 is trivial. For the inductive case, assuming that the solution
works for the n×n×n cube we prove that it works for the (n+1)×(n+1)×(n+1)
cube. In order to avoid a cumbersome notation, we will be a bit informal and
we will concentrate on the specific case n = 4.

Take the solving scheme for n + 1 = 5 depicted above, and consider the
4 × 4 × 4 cube obtained by removing the bottom face, the front face and the
leftmost face. Such sub-cube is highlighted below by using orange (medium
grey, if printed in black&white) cages.

The sub-cube does not correspond to the solving scheme for n = 4, since it
has less active chickens than needed and those present are positioned differently
than expected. However, the active chickens in the removed faces can help to

3

“activate” some lazy chickens in the needed positions. In fact, it is not difficult
to see that we can turn some lazy chickens into active chickens in order to reach
the situation depicted below

Note that the considered sub-cube, depicted in the picture below on the left,
if rotated upside down, as illustrated in the right part of the figure, will contain
active chickens in the cages required by the solving scheme (and some more).

Hence, by inductive hypothesis we have that all the chickens in the sub-cube
can be made active, thus leading to the following situation:

4

Now, also the lazy chickens in cages ci,j,k such that 0 ≤ j + k < i < n, i.e.,
in orange (medium grey, if printed in black&white) cages in the picture on the
left below, can be made active. We thus reach the situation illustrated in the
picture on the right.

We are left to “activate” the chickens in the three triangle-shaped portions
on the removed slices (the bottom level, the front face and the leftmost face):
(i) cn,j,k with n < j + k, (ii) ci,0,k with 0 ≤ i < k < n, and (iii) ci,j,0 with
0 ≤ i ≤ j < n. In each case the problem can be easily solved by noticing
that each cage of such triangles is adjacent to a face of the sub-cube where all
chickens are active, so that only two adjacent active chickens on the same slice
are needed. Then, since the diagonals of such slices are active by the initial
placing of regular active chickens, we can immediately conclude (as in the grid
case) that also the three triangle-shaped portions can be made active.

5

Elections of the ALP Executive Committee http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Article...

1 of 1 3/28/2008 1:25 PM

Association for Logic Programming
Executive Committee Election

Enrico Pontelli
New Mexico State University

USA

Editor: Enrico Pontelli

We are pleased to announce the results of the Elections for three open positions in the
Executive Committee of the Association for Logic Programming. The three positions
are replacing Sandro Etalle, Gopal Gupta, and Mirek Truszczynski, who have
completed their term.

The roster of nominees for this election included the following candidates:

Piero Bonatti (University of Naples)
Agostino Dovier (University of Udine)
John Gallagher (Roskilde University)
Andy King (University of Kent)
Fangzhen Lin (Hong Kong University of Science and Technology)
Gianfranco Rossi (University of Parma)
Kostis Sagonas (National Technical University of Athens)
Vitor Santos Costa (University of Porto)
Torsten Schaub (University of Potsdam)

The ALP Secretary (David S. Warren) conducted the elections; the voting process was
open to all members of ALP, as determined by the membership to the offical ALP
mailing list. The tallying of the votes has been conducted with the help of Lee Naish.

The winning candidates and new members of the ALP Executive Committee are:

Agostino Dovier
John Gallagher
Torsten Schaub

The ALP EC would like to thank all the candidates for their generous willingness to
serve the logic programming community, and we would like to welcome the three new
members. We also wish to extend a big 'THANK YOU!' to Sandro, Gopal, and Mirek for
their dedication and service to the ALP over the years.

Historical

Perspectives

Vol. 21 No. 1

February/March 2008

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

1 of 6 3/28/2008 1:27 PM

My Life as a Prolog Implementor

Bart Demoen
Department of Computer Science

K.U.Leuven
Belgium

Editor: Enrico Pontelli

I heard about Prolog for the first time when I was teaching IBM-370 assembler in a
technical school. I was studying for a masters in informatics at that moment as well. A
colleague said: "very soon now, you will learn about a language in which backtracking
is build in". I thought he was joking because this did strike me as too weird. But soon
afterwards, indeed, we learned about Prolog in class, and at some point the professor
even gave the floor to a bearded man who tried to explain the implementation of Prolog
to us: that was the first time I saw Maurice Bruynooghe. I can't remember much about
that implementation, but it wasn't anything WAM-like: we speak beginning 1983.

During the summer vacation of 1983, the ministry decided that teachers would no
longer be paid for overtime, so I had to quit my teaching job: another colleague at
school told me about his brother Raf Venken who worked in a small company (BIM)
that was looking for collaborators for a new project. He gave me the telephone number
of ... Maurice: Maurice was in waiting for a permanent research job with the national
FWO (kind of NSF), and in the mean time he got the manager of BIM
(Michel Van den Bossche) interested in Prolog. They wrote up a project proposal which
would - in collaboration with the university in Leuven - design and implement a
commercial Prolog system: BIM-Prolog. At the phone Maurice asked me my
qualifications and when he heard I had a masters in mathematics, I was hired. My PhD
in theoretical physics was of no interest to him.

Gerda Janssens was one of the project members at the university: she had done her
engineering thesis on an abstract machine for Prolog, and the idea was to use this
machine as a starting point for the BIM-Prolog. She would do the implementation of the
machine, I would do the compiler. We knew we still needed to do some redesign, but
we were quite optimistic. Our goals were not very ambitious: beating C-Prolog in
performance would have been considered a success. We looked at
manuals (DEC-10 Prolog, C-Prolog, M-Prolog) and a book (Clocksin and Mellish) for
learning/understanding which built-ins were needed and which we could do without.
We considered some of the things we read rightout silly: how can you name a
predicate tab/1 and let it write out spaces ? How stupid is it to make the space between
a functor name and the next open bracket meaningful ? We did some redesign of the
Prolog syntax. We were also influenced a lot by the original Marseille
attitude towards Prolog. We decided on a set of built-ins and went on implementing. It
was fall 1983.

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

2 of 6 3/28/2008 1:27 PM

In February 1984, Maurice took me to the Atlantic City ILPS. That was a wonderful
experience. Also a bit awkward at some point because Maurice took me to a program
committee dinner where I definitely did not belong. But most of all it was interesting,
and I only realised much later who I met in person: on the way to Atlantic City we met
Peter Kovacs who had been involved in the implementation of M-Prolog (we had
studied the M-Prolog manuals while doing the BIM-Prolog design, especially the
modules!) and Kenneth Kahn. During the conference, I was within touching distance of
Alain Colmerauer who gave what might have been his first invited talk on constraint
logic programming (I didn't buy it: arithmetic in which the variables are still free ... too
weird for me), two giants named David Warren (an
H.D. and an S.), Ehud Shapiro (who gave his talk on the Bagel), Seif Haridi, Mark
Stickel and many more. It is worth looking at the proceedings of that conference, not
just for the historical perspective: lots of the work presented there is really mandatory
reading. The evenings in the hotel room with Maurice were also interesting: he had
been given a bunch of papers to referee for some next conference (for the young: in
those days you submitted 6 hard copies) and he made me read them, even though I
lacked lot's of background to make sense of them.

For the BIM-KUL team, the most important ILPS paper was by Evan Tick and David H.
D. Warren: Towards a Pipelined Prolog Processor. Although it didn't introduce the
WAM, it was for us (Maurice and me) the first contact with the WAM - remember this is
pre-internet time. After hearing the talk (Evan delivered it) Maurice and I were back in
our room and Maurice asked: "What do you think ?". I answered: "Gerda will not be
happy about this; we must restart from scratch". It seems that other teams went
through the same experience/evolution.

So on coming back to Belgium, we restarted with the WAM as the new starting point for
a faster implementation. Not that we understood the WAM at that point: some of the
instructions in the Tick-Warren paper didn't make sense to us at all, so we invented our
own variants, in particular related to indexing. For instance, we couldn't understand
why one would create TWO choice points for one activation of a predicate, so we did
away with that from the start.

While working on the first release of BIM-Prolog, a competitor emerged in the USA:
Quintus-Prolog, headed by D.H.D. Warren himself, and with people like David Bowen
(with whom I spend a nice evening for the first time in Atlantic City and later more at
other conferences), Richard O'Keefe, Tim Lindholm, just to name some of the Quintus
people I met in person, and whose names I did not forget.

At BIM, we were particularly worried about speed, the speed of nrev to be more
precise: while our implementation matched Quintus-Prolog in speed for most
benchmarks, we lagged far behind for nrev. BIM-Prolog had at that point already
upgraded from an emulator to a native code generating system, under the impulse of
two new team members: Herman Crauwels and Andre Marien. The Quintus trick to get
nrev so fast was discovered by Herman by dumping the Quintus code in assembly
form (somehow we had a tape with the Quintus implementation - I still have it !) and
there we learned about instruction merging. All implementations do it now and it
benefits not just nrev of course. We knew Quintus Prolog quite well at BIM. During the
1987 ICLP in Melbourne, where Quintus had a demo booth, I was denied access to the
Quintus demo machine, because I was too good at making it crash - it was just
something silly with floating point numbers.

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

3 of 6 3/28/2008 1:27 PM

Another player was showing at some point: SICStus Prolog, with Mats Carlsson as the
main implementor. Mats was then (also) known for his LM-Prolog implementation and
he gave a demo of it at the university of Brussels, probably the only place in Belgium
with a Lisp Machine ever. We were very impressed. And also his later work on SICStus
Prolog has always impressed me enormously: while I fled from BIM with its demanding
clients back to the university - where you basically only do as you like if you play your
cards right - Mats combines the development and support for a commercial system
that now contains almost everything else other systems have (and it is on top of that
also robust, reliable and reasonably fast), and he keeps writing interesting papers.
Mats is one of my implementation heroes.

Garbage collection for Prolog was always of particular interest to me: it started (for me)
with ideas by Maurice and Edwin Pittomvils (see a paper in Boston SLP 1985) and a
first version of a garbage collector for BIM-Prolog which I spend about two months
debugging before we decided to rewrite it from scratch - together with Alain Callebaut.
Alain was also the main drive behind a full-screen debugger for BIM-Prolog, similar to
dbxtool for C on SUN machines. This debugger
was far ahead of its time: it just laughed at the traditional Bird box debugging model
(which I never liked to say the least - not that I think programmable debuggers are
better: give me a print statement [that works even in nondet context] and I can debug
anything). Garbage collection was also my first (sometimes only) involvement with
some other Prolog systems: when Kostis Sagonas came to Leuven in 1996, our goal
was to build a garbage collector for XSB, but before we did that, we had to understand
its usefulness logic. I am so grateful to Yves Bekkers (and his colleagues) to have
emphasised this concept, because the intuition that one can have about it really
benefits from making it explicit. I also wanted to work on the implementation of tabling
as an add-on, sort of a library that could be added to any Prolog implementation and
give the benefits of the SLG-WAM: Kostis rather quickly convinced me that this is not
possible, so I abandoned the idea. It is good to see that implementation groups in
Madrid and Porto have made progress in this area quite recently, but important
challenges still remain, and perhaps Kostis was right after all.

A very interesting development during the mid-80's was the coupling of external
databases with Prolog. Unify was one such DB system and I went with Ann Mulkers
(who worked like Gerda at the university on the BIM-project) to Hamburg to do such an
integration - February 1986 I believe it was. It was a very exciting time. Some things we
did then are now being rediscovered and published by other groups: that is good,
because it means we were not too far off the right track :-)

1986 was also interesting for its ICLP in London, generally interesting, but for Prolog
implementors in particular. I couldn't attend the conference, but when I saw the
proceedings, I realised that we (at BIM) could have had three Prolog implementation
papers there, if only we had realised that what we did in BIM-Prolog was worth
writing up, instead of merely implementing it. Other papers at ICLP'86 have influenced
me a lot. Chris Mellish with a paper on abstract interpretation (at Leuven we had seen
a preprint of that paper and under the impulse of Maurice worked on it), and a paper by
Saumya Debray. It was the first Saumya paper I ever saw, but not the last one I was
impressed with. Saumya's papers show such a good mix ofscientific rigidity and
pragmatism: mandatory reading for implementors I would say.

In 1987 I left BIM and went back to the university, to join the research group that
Maurice was leading. Danny De Schreye also joined the group. Shortly before that,

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

4 of 6 3/28/2008 1:27 PM

Peter Van Roy had spend some time in Leuven and I worked with him on Prolog
implementation issues.

It would be fun (for me) to go on like this, hopping from one conference to another,
remembering little details from my life as an implementor while I had the opportunity to
meet interesting people. Let me make some big jumps in time. BIM went bankrupt
during my second visit to Paul Tarau in Moncton in 1996 (it wasn't Paul's fault!): we
implemented together a novel garbage collector in BinProlog in 1995, and a Prolog to
Java compiler in 1996 - just too much fun to be true. In 1997, I spend a semi-sabbatical
in Melbourne with Peter Stuckey, Maria Garcia de la Banda and Kim Marriott: they
seduced me to get involved in HAL, a new constraint solver programming language on
top of Mercury. In the mean time, Mercury has assimilated (or has it been assimilated
by ?) HAL. Also too good to be true. In
1999, I felt it was time to do my own Prolog system: not for the sake of having Yet
Another Prolog (wink) but because there were too many open questions (for me) about
Prolog implementation and there was no way to satisfy my curiosity with other systems
- the XSB experience had somehow convinced me of that. So dProlog was born, in
four incarnations (corresponding to four basic questions I had about WAM variants),
one of which was implemented by Phuong-Lan Nguyen. dProlog
gave life to ilProlog (still heavily used under the name of hipP for ILP applications,
maintained and further developed by Henk Vandecasteele and Remko Troncon for
some time) and to hProlog which I and Phuong-Lan use regularly for experiments.
hProlog was also a very good test bed for the CHR implementation by two of my PhD
students, Tom Schrijvers and Jon Sneyers. It has resulted in a CHR version under
SWI-Prolog, which is single-handedly maintained by Jan Wielemaker:
another hero. I have worked for a while on providing SWI-Prolog with a faster basic
engine, but that failed. Since hProlog is rather speedy, I have been offered the
following advice more than once: "just replace the SWI-Prolog engine with the one
from hProlog". I think brain surgeons will be able to replace whole human brains
sooner ...

A lot of work was done in the area of concurrent and parallel Prolog systems. There
was pressure to participate in ESPRIT projects like PEPMA and ACCLAIM, and I gave
in. Patrick Weemeeuw and Remco Moolenaar - two of my PhD students - worked on
Parallel Garbage Collection for Aurora and on AKL. We had a ridiculously expensive
8-processor Sequent machine and it was an interesting experience. However, my
attitude towards making parallel Prolog implementations is now: don't do it, it is too
difficult.

I had a short involvement with GNU-Prolog: Ruben Vandeginste worked with me on
garbage collection for Prolog during his PhD. He implemented a garbage collector for
GNU-Prolog, I think in 2003. Unfortunately the final integration never happened. I must
have contributed directly or indirectly a garbage collector to three
systems (besides BIM-Prolog and the dProlog offspring): XSB, GNU and BinProlog.
None of those survived: the garbage collection level of involvement is just too intimate
to last very long :-) But at least XSB and BinProlog have garbage collectors. And
Daniel Diaz is now putting one in GNU-Prolog I recently heard.

What are the prospects for a Prolog implementor in 2007 ? There are several aspects
to the situation. First of all it is clear that the basic implementation technology for
Prolog proper is not evolving fast: in fact, the WAM is just too good. From time to time
someone claims to have designed a fundamentally better machine than

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

5 of 6 3/28/2008 1:27 PM

the WAM, but it has always turned out that the WAM was actually superior, or the
WAM is versatile enough to assimilate a particular good idea. Secondly, Prolog itself is
not evolving much: having an ISO Prolog standard is part of the reason for that (and of
course Part II on modules is a complete disaster). You might conclude that the
prospects for a Prolog implementor look dim.

On the other hand, the application domains in which Prolog is used are evolving and
become more demanding. This is a great opportunity for Prolog implementors to live
out their phantasies. Just to name one field I am involved in: Inductive Logic
Programming, as part of Machine Learning. In the past years I have - together with
Henk, Gerda and Remko, and in cooperation with the ML team in Leuven - done work
on the execution of large sets of queries on large example sets. This pushes compiler
technology to the limit, requires additions to the WAM, ... just the thing one would like
to be involved in when making a life as a Prolog implementor. Also, have a look at what
Vitor Santos Costa (one more hero !) has been doing in Yap in the past years: quite a
bit of it is inspired by the needs of ILP. For sure other
application domains do or will certainly present new challenges to the Prolog
implementor.

Let me go back to the issue of Prolog as a not evolving language. There is a split -
almost a schism (in the church sense, not the musical sense) - in the Prolog
community (implementors mainly I think) about whether Prolog should move towards a
more robust type of language where one must declare at least types, and maybe also
modes. This split is very detrimental to the evolution of Prolog. Under the impulse of
Zoltan Somogyi (a hero !) Mercury moved to one extreme in this respect (extreme is
not meant to be judgemental) and I am not so happy with its program development
model, but it is clear that the rest of the world just demands (at least) types in a
programming language and for good reasons. Not having types restricts the
acceptance potential of Prolog seriously. Types (and declarations) is not at all against
the LP philosophy. Just complement the equation PROGRAM = LOGIC + CONTROL
and get PROGRAM = LOGIC + CONTROL + TYPES. The challenge for Prolog
implementors is to integrate types in the implementation in a decent way, and I am not
thinking primarily about performance gains - I surprised you here, didn't I :-) BTW, I
am still partly in the abstract interpretation and program analysis camp, but I believe
that the equation PROGRAM = LOGIC + ANALYSIS has only imaginary solutions.

A relatively recent challenge is put to the Prolog implementors by ASP. I am using ASP
in a generic way for a bunch of LP paradigms or systems based on model generation.
ASP is currently the closest to what LP promised to be: you specify in a logic formalism
and the implementation will find the answers to your problem. It is very much only the
LOGIC part of the equations above, but that has always been the first part to get right.
Still, the world needs the CONTROL part also very badly and as far as ASP goes, we
are not there yet. Integrating a model generation paradigm with a goal solving
paradigm has been investigated already (look at work by Enrico Pontelli for instance),
but a lot more is needed. The Prolog language and its implementation assimilated
constraint programming with so much grace, and also the concept of tabling. It would
be a great if Prolog could also embrace ASP without sacrificing its own spirit. I consider
that the most important challenge for Prolog implementors at this moment, and one
which cannot be met without the help of theory (I didn't say "theoreticians" on purpose
:-)

Prolog has always been our most solid stepping stone from imperative to logic

Contraint Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Historic...

6 of 6 3/28/2008 1:27 PM

programming (and back), so it is difficult to make the next step. However, we need to
move on: implementors can make it happen. Maybe only a new generation of Prolog
implementors can do it.

Systems

Spotlight

Vol. 21 No. 1

February/March 2008

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

1 of 7 3/28/2008 1:28 PM

Logic Programming Systems
The SWI-Prolog Environment

 Jan Wielemaker
Human-Computer Studies Laboratory,

 University of Amsterdam,
 Kruislaan 419,

 1098 VA Amsterdam,
 The Netherlands,

wielemak AT science.uva.nl

Editor: Enrico Pontelli

PDF Version available HERE.

System Web Page: http://www.swi-prolog.org/

Abstract: Development of the SWI-Prolog environment has started in 1985. Its
developments was started in the context of interactive application development. More
recently the development is guided by Semantic Web application development and
contributions from the world wide community. In this article we will briefly introduce the
SWI-Prolog community, touch the many features and outline our future plans.
The primary aim of the Logic Programming Systems series is to provide an overview of
system features. We deliberately concentrate more on the context in which the
development of SWI-Prolog started, how this is currently shaped and what our plans
are. A big table is more suitable for a product comparison. An outline of the community
is hopefully more pleasant to read and provides more stable information about the
system.

1. The SWI-Prolog history and
community
We started SWI-Prolog in a EU project (KADS) where we built a workbench for
Knowledge Engineering. Several partners had a background in AI and where used to
Prolog. These were the days where graphical user interfaces just started to emerge, in
our case SunView on SUN workstations. Anjo Anjewierden created an object-oriented
connection between Prolog and SunView, called PCE [7]. The initial system used
Quintus Prolog which, in those days,1 could call C, but could not be called from C. This
limitation severely handicapped PCE.

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

2 of 7 3/28/2008 1:28 PM

In the meanwhile SWI-Prolog was created as a toy Prolog system, but designed with a
bi-directional C interface from the start. Just for play, we connected it to PCE and
added enough built-ins to run our workbench-under-development. Enhanced
functionality of PCE resulting from the bi-directional interface, a very fast compiler and
the make/0 feature to recompile modified source files quickly moved the whole
consortium to use this new Prolog. As we had no concrete plans with it, we put it the
source on the anonymous ftp server under a non-commercial-use license.

Somehow the sources were picked up, as it turned out mostly by Universities as the
default system for teaching Prolog classes. Most likely because the system was
simple, small, installed easily on most Unix systems in common use and it could be
used without going through the legal and financial departments. We established a
mailinglist, continued development in various projects and frequently released new
versions.

PCE turned into XPCE when X11 became fashionable and the whole system was
ported to Windows using Windows-NT 3.51. (X)PCE was distributed separately as a
licensed system with a limited free demo for Windows. With help from Richard
Stallman from the Free Software Foundation we established a transparent license
schema that allowed for using the GNU readline library for editing input lines. After
convincing the University we re-released the combined XPCE/SWI-Prolog system,
using the LGPL for all C-code and the GPL with a statement originating from the GCC
runtime libraries for the Prolog code. This statement allows using the Prolog code from
the kernel and libraries alongside proprietary code. SWI-Prolog 5.0/XPCE 6.0 was
released under these conditions early 2002. This proved a big step forwards2, inviting
both commercial usage and a community that contributed code in addition to bug
reports and feature requests.

Commercial users sponsored the development of the SSL (Secure Socket Layer)
interface, big integer and rational number support, literate programming (PlDoc) and
the testing environment (PlUnit).

In 2003 Bart Demoen convinced us to add attributed variables based on the hProlog
approach for dynamic attributes, after which the Leuven team would port their
constraint programming tools to SWI-Prolog. Tom Schrijvers has created CHR for
SWI-Prolog, Leslie de Koning ported clp(q) and clp(r). Markus Triska added several
specialised constraint solvers and is currently developing a full fledged clp(fd) system.
Paul Singleton developed and maintains JPL, the Java interface.

In the meanwhile internal projects started concentrating on the Semantic Web and
Web services, resulting in libraries for RDF storage [9,11] and a comprehensive
multi-threaded HTTP server infrastructure [10].

The central focus of the community is the mailinglist with approximately 600 members
exchanging about 800 messages annually (2007). Second is a Bugzilla server for bug
reports which functions well. We have been running a Wiki for several years to invite
exchange of ideas and code. It turned out the contribution by spammers was far larger
than the community contribution, forcing us to disable write access. Possibly we were
too early. We are still looking for a platform that promotes
exchange and improvement of reusable Prolog code in the community like Perl's
CPAN3 network.

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

3 of 7 3/28/2008 1:28 PM

With SWI-Prolog, we aim at providing a scalable robust and portable Prolog system to
the educational, research and commercial community. We release about every two
weeks or immediately after a bug has been fixed that is likely to affect many users or is
a blocker for just a few users. This guarantees everyone has access to the latest bug
fixes and features. We adopt the Open Source policies as outlined by Linus Torvalds,
where we release new features in an early and often incomplete state, waiting for early
adopters in the community to help settling the final specifications and make the library
stable. This approach has worked notably well for the ODBC interface, multi-threading,
unbound integer and rational number support, RDF and the HTTP services. This
approach appears to work because

Initial development of a prototype generally takes only 10%-20% of total
development time in traditional development. After this initial development the
community starts to contribute with feature requests (saving specification time)
and bug reports (filling the test suite).

1.

Early adopters can help shaping the final system. If the developers make sure
issues are fixed quickly (hours, at most a day), the users stay satisfied.
Perceived missing functionality is discussed between developer and user and
efficiently resolved either by extending the library or discovering how the
problem can be solved appropriately using the available functionality.

2.

Early adopters generally install the required software to build SWI-Prolog from
source and follow the version from the SCM system (currently GIT, see below) to
bypass the bi-weekly release cycle.

3.

Since October 2007 we moved revision control from CVS to GIT.4 GIT provides a
much better web interface, is much faster and allows for distributed and offline version
management. These features make it much easier for developers to cooperate or fork
their own version without the need for elaborate right management.

2. SWI-Prolog by feature
2.1 Core features
SWI-Prolog's kernel is loosely based on the ZIP [1,3] virtual machine. The Prolog
engine is not designed for speed, but has all commonly seen optimisations to avoid
memory exhaustion in 24*7 services: last call optimisation, garbage collection and
atom garbage collection. The kernel is designed to impose few limits. Atoms length,
integer size and term arity is bound by memory only and atoms cover the full Unicode
character set, including 0-characters.

Emerging from the need in interactive applications and network services we support for
multi-threading. Multi-threading [5] is currently under discussion in the ISO WG17
group where the initial specification is based on the SWI-Prolog manual. The current
draft is implemented in SWI-Prolog, XSB and YAP.

The primitives offered by SWI-Prolog aim at satisfying a wide user community. Built-ins
and libraries inherits from different Prolog traditions: Edinburgh, ISO and
Quintus/SICStus. Language constructs include mutable terms, global variables,
attributed variables and coroutining based on attributed variables. The system supports

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

4 of 7 3/28/2008 1:28 PM

both backtrackable and non-backtrackable mutable terms and global variables.
Non-backtrackable mutable data on the stacks is often used as a thread
and exception-safe building block for primitives whose implementation requires data to
survive backtracking, such as variations on the all-solution predicates (e.g., resource
bounded findall/3).

Portability has always been an important asset. The current core system depends on
the Ansi C99 standard for fixed-width integers and Unicode handling, POSIX threads
(using pthreads-win325 mixed with Windows primitives for performance on Windows),
the GNU GMP library for unbounded integers and rational numbers and optionally the
GNU readline library for input editing. XPCE graphics depends on either X11 or the
Windows GDI. The system compiles on both 32-bit and 64-bit hardware, including the
64-bit editions of Windows XP and Vista. Database connectivity depends on ODBC,
using UnixODBC6 on Unix systems. Secure Socket connections depend on
OpenSSL7. Official releases include binaries for Linux, 32-bit and 64-bit Windows and
MacOS X.

2.2 Development environments
The standard development environment is merely a set of components that provide
hooks to replace parts of it by alternatives. The downside is that there is no integrated
central graphics window that exposes all features. There are some alternatives that
provide for a common front-end. Notably SWI-Prolog Editor8 by Gerhard Röhner
(Windows only) and an extensive GNU Emacs mode9 by Markus Triska. These tools
provide access to the native IDE components which we will briefly summarise here.
PceEmacs. PceEmacs is an Emacs clone written in XPCE/SWI-Prolog. It allows for
opening the edit buffer as a Prolog stream. This feature is used to realise syntax
colouring based on cross-referencing and actual parsing. The clause under the cursor
is re-parsed on every keystroke. It is not coloured if it cannot be parsed, providing
adequate and immediate feedback on syntax errors. Colouring of goals is based on
cross-referencing using the same library as gxref/0 discussed below and
distinguishes between undefined, local, imported, and dynamic predicates while
providing a context sensitive menu. Colouring of variables signals singletons and
highlights variables sharing with the one under the cursor.

Graphical tracer. [6] The graphical tracer is a source-level tracer that exploits
PceEmacs to show the source and current location. Additional windows provide
variable bindings and a stack-view that includes choice points. Notably the latter
proves efficient for fixing determinism problems.
Graphical cross referencer. The gxref/0 predicate analyses the currently
loaded program, providing a graphical overview of file dependencies and a
per-file dependency view including not-called predicates. The underlying
cross-referencer can be called as a Prolog library. It provides hooks that allow for
resolving complicated meta-calling.
Profiler. [6] The execution profiler samples the execution, creating the actual
call-tree and how time and calls propagate along the edges. A graphical front-end
allows navigating this tree.
PlDoc. [8] PlDoc provides for literate programming support using Wiki-style
comments. Feedback is immediate through the built-in web-server. PlDoc

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

5 of 7 3/28/2008 1:28 PM

integrates the user documentation with the system libraries by processing the
HTML system documentation. It also provides a LaTeX backend.
PlUnit. PlUnit is a test environment. It provides management when tests are
loaded and executed and various levels of feedback on the progress of the tests.
Tests themselves look like an ordinary clause, where the head defines properties
of the test such as whether it succeeds of fails, which bindings it must produce,
which errors it raises, whether or not it is deterministic as well as optional setup
and cleanup handlers. The clause body contains the code that is tested. PlUnit is
now used for a large part of the system tests. PlUnit runs on SWI-Prolog and
SICStus Prolog.

2.3 Libraries
SWI-Prolog aims at programming the the large. Its libraries include many of the
de-facto libraries such as lists, ordered sets, association lists, graphs, etc. Above all
though, it contains many libraries to deal with external data formats and protocols.
Many of these are wrappers around C libraries, some are native Prolog. We will just
reference supported protocols and formats using their acronyms. Full information is
easily found on the web and SWI-Prolog manuals. SWI-Prolog provides bundled
support for C, C++. CGI, Deflate (zlib), Graphics (XPCE connects to X11 or Windows),
HTTP (client and server), Java, JSON, MIME, ODBC, RDF (XML and Turtle) [11],
SGML/HTML/XML (ported to XSB), SSL, base64, sockets (TCP and UDP) and
www-form-encoded.

3. SWI-Prolog plans
Project driven development currently concentrates on enhancing the Semantic Web
and general web programming support. We think this is a fruitful domain for Prolog
because of its natural handling of the RDF triple model. As web services get more rule
based components, the use of Prolog for web programming becomes more important.
Using AJAX10 technology and a Prolog embedded HTTP server is becoming an
interesting alternative for interactive Prolog applications.

A pilot project proved the need for and feasibility of restructuring the virtual machine for
better modularity and faster execution. This project should also add tabling [4] to
SWI-Prolog.

At the ICPL-07 (Porto), we discussed the options to merge with YAP11 Prolog. The
current plan is to make it step by step easier to write code that is portable between the
two dialects. The first step has been implemented and established standards for
conditional compilation and detecting of dialect and system features. The next step is
largely agreed and extends the module system with re-export and import by another
name to make it easier to define new modules in terms of old modules, which we will
use easily emulate our libraries and establish a common library structure. We also plan
to arrive at a common foreign language interface. We
discuss additions we think are of mutual interest so they are shared upfront and we
tackle incompatibility issues on incident basis.

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

6 of 7 3/28/2008 1:28 PM

4. Conclusions
We described the history, community, feature and plans around SWI-Prolog.
SWI-Prolog was developed for in-house prototype development on behalf of our
research. It grew big in education. Especially after a re-launch as integrated system
under a clear Open Source license we have seen increasing contributions from the
community and interest from research and commercial users. It aims at supporting a
large part of the logic programming community with a portable, robust and feature rich
implementation of the Prolog language and achieves these goals by maintaining a
supportive community and short release cycle. We aim at improving the support by
teaming up with YAP.

Acknowledgements
SWI-Prolog is a community. The text above already mentions the contributors of
important parts of the system. Bob Wielinga is not only an active user, but also ensured
projects in which SWI-Prolog could be deployed and developed. Paulo Moura builds
the MacOS Intel binaries, provides Logtalk [2] and promotes standards in the Prolog
community including the multi-threading API. Richard O'Keefe is invaluable in
answering Prolog design issues on the mailinglist and providing background
information for motivating built-ins and library primitives.12 Bart Demoen is invaluable
explaining implementation tricks, especially those that have not been published. Ulrich
Neumerkel recently performed exhaustive tests, that helped fixing many obscure bugs.

References
[1] D.L. Bowen, L.M. Byrd, and WF. Clocksin. A portable Prolog compiler. In L.M.
Pereira, editor, Proceedings of the Logic Programming Workshop 1983, Lisbon,
Portugal, 1983. Universidade nova de Lisboa.

[2] Paulo Moura. Logtalk - Design of an Object-Oriented Logic
Programming Language. PhD thesis, Department of Informatics, University of Beira
Interior,
 Portugal, September 2003.

[3] Ulrich Neumerkel. The binary wam, a simplified prolog engine. Technical
report, Technische Universität Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich/papers/PDF/binwam-nov93.pdf.

[4] I.V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift, and David
S. Warren. Efficient tabling mechanisms for logic programs. In Leon Sterling, editor,
Proceedings of the 12th International Conference on Logic Programming, pages
697-714, Cambridge, june 1995. MIT Press.

[5] Jan Wielemaker. Native preemptive threads in SWI-Prolog. In Catuscia
Palamidessi, editor, Practical Aspects of Declarative Languages, pages 331-345,
Berlin, Germany, december 2003. Springer Verlag. LNCS 2916.

DLV http://www.cs.nmsu.edu/~epontell/backbone/February08/content/System...

7 of 7 3/28/2008 1:28 PM

[6] Jan Wielemaker. An overview of the SWI-Prolog programming environment. In Fred
Mesnard and Alexander Serebenik, editors, Proceedings of
 the 13th International Workshop on Logic Programming Environments, pages 1-16,
Heverlee, Belgium, december 2003. Katholieke Universiteit Leuven. CW 371.

[7] Jan Wielemaker and Anjo Anjewierden. An architecture for making object-oriented
systems available from Prolog. In Alexandre Tessier, editor, Computer Science,
abstract, 2002. http://lanl.arxiv.org/abs/cs.SE/0207053.

[8] Jan Wielemaker and Anjo Anjewierden. PlDoc: Wiki style literate programming
for Prolog. In Patricia Hill and Wim Vanhoof, editors, Proceedings of the
 17th Workshop on Logic-Based methods in Programming Environments, pages16-30,
2007.

[9] Jan Wielemaker, Michiel Hildebrand, and Jacco van Ossenbruggen. Using Prolog
as the fundament for applications on the semantic web. In S.Heymans, A. Polleres, E.
Ruckhaus, D. Pearce, and G. Gupta, editors, Proceedings of the 2nd Workshop on
Applicatiions of Logic Programming and to the web, Semantic Web and Semantic Web
Services, pages 84-98, 2007.

[10] Jan Wielemaker, Zhisheng Huang, and Lourens van der Mey. SWI-Prolog and
the Web. Accepted for publication in TPLP, HCS, University of Amsterdam, 2006.

[11] Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-based infrastructure
for RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC'03, Sanibel Island, Florida, pages
644-658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.

1Quintus, as most other todays Prolog systems offer a good bidirectional C interface.
2http://www.swi-prolog.org/statistics.html
3http://www.cpan.org/
4http://git.or.cz/
5http://sourceware.org/pthreads-win32/
6http://www.unixodbc.org/
7http://www.openssl.org/
8http://lernen.bildung.hessen.de/informatik/swiprolog/indexe.htm
9http://stud4.tuwien.ac.at/\string~e0225855/ediprolog/ediprolog.html
10http://en.wikipedia.org/wiki/AJAX
11http://www.ncc.up.pt/~vsc/Yap/
12http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

Regular

Columns

Vol. 21 No. 1

February/March 2008

Dissertations in Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Dissert...

1 of 3 3/28/2008 1:29 PM

Dissertations in Logic Programming

An Open Invitation:
The column on dissertations in Logic Programming is aimed at widely publicizing
recent dissertations (and even MS Theses) deadling with topics relevant to Logic
Programming. This is an outstanding opportunity to

Shine a spotlight on the new generation of logic programmers
Demonstrate that the field of logic programming is alive with new "blood"
Provide to our graduating students with an additional opportunity to get
themselves known to the logic programming community at large
Perhaps facilitate the creation of contacts with potential employers

Please, if you are a student who is about to complete a Thesis or Dissertation in logic
programming, if you are a faculty member who is advising a student completing a
Thesis in logic programming, if you have a friend/colleague/relative/... who meets such
requirements, please send me a message and help me advertising these fantastic
achievements.

 Enrico

Integrating ASP and CLP Systems: Computing Answer Sets from
Partially Ground Programs

Veena S. Mellarkod
Texas Tech University

Answer set programming (ASP) has emerged as a declarative paradigm for knowledge
representation and reasoning. In this approach, a logic program is used to represent
the knowledge of the domain and various tasks are reduced to computing answer sets
of this program. ASP languages A-Prolog and CR-Prolog have been proven as
powerful tools for constructing complex reasoning systems.
Constraint logic programming (CLP) emerged as an alternate paradigm through the
fusion of logic programming and constraint solving. A CLP solver thus integrates
resolution techniques from logic programming and constraint solving techniques from
constraint satisfaction. While ASP is expressive for knowledge representation and
reasoning, CLP solvers are efficient reasoning with numerical constraints.

Every state-of-the-art ASP solver computes answer sets of programs from their ground
equivalents. Though these systems solve large industrial problems, the ground
programs become huge and unmanageable. This is especially true when programs
contain variables that range over large numerical domains; huge memory requirements
eventually force the solvers to fail. The goal of this research is to address this issue by
integrating different types of reasoning techniques to compute answer sets of
programs.

Dissertations in Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Dissert...

2 of 3 3/28/2008 1:29 PM

First, we investigate the integration of answer set reasoning, a form of abduction, and
constraint solving techniques. We design a collection of languages, V(C),
parameterized over a class C of constraints. An instance AC0 from this family is
studied as a knowledge representation tool. An algorithm to compute answer sets of
AC0 programs is developed. An AC0 solver is built that computes answer sets from
partially ground programs. The use of this language and the efficiency off the
solver are demonstrated.
We extend our investigation to develop methods to include resolution techniques. We
design a collection of languages AC(C) parameterized over a class C of
constraints. We develop an algorithm to compute answer sets of AC(C) programs from
their partial ground instances by integrating the four reasoning techniques
and prove correctness. A solver is built to compute answer sets for a class of AC(C)
programs.

Our work is a significant step to declaratively solve problems that cannot be solved by
pure ASP or CLP solvers. The solvers built are the first to tightly integrate different
reasoning techniques to compute answer sets from partial ground programs.

Efficient SAT-based Answer Set Solver

Zhijun Lin
Technical Tech University

Recent research shows that SAT (propositional satisfiability) techniques can be
employed to build ecient systems to compute answer sets for logic programs. ASSAT
and CMODELS are two well-known such systems that work on normal logic programs.
They find an answer set from the full models for the completion of the
input program, which is (iteratively) augmented with loop formulas. Making use of the
fact that, for non-tight programs, during the model generation, a partial assignment
may be extensible to a full model but may not grow into any answer set, we propose to
add answer set extensibility checking on partial assignments.

Furthermore, given a partial assignment, we identify a class of loop formulas that are
"active" on the assignment. These \active" formulas can be used to prune the search
space. We also provide an efficient method to generate these formulas. These ideas
can be implemented with a moderate modification on SAT solvers. We have developed
a new answer set solver SAG on top of the SAT solver MCHAFF. Empirical studies on
well-known benchmarks show that in most cases it is faster than the state-of-the-art
answer set solvers, often by an order of magnitude. For disjunctive logic programs, the
existing SAT-based solvers translate them into propositional formulas based on a
complex completion definition, and then make use of loop formulas and SAT solvers to
find answer set. In this paper we present a new approach that allows the translation of
a program into a formula that is weaker but less complex than the completion. It
performs answer set checking on partial assignments.

In case a partial assignment is inextensible to an answer set, we use support formulas,
which is a generalization of loop formula, to prevent the repetition of the same
mistake. Empirical studies on disjunctive logic programs con�rm the performance

Dissertations in Logic Programming http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Dissert...

3 of 3 3/28/2008 1:29 PM

advantage of the new approach.

Quarterly Report from the ALP Executive Committee http://www.cs.nmsu.edu/~epontell/backbone/February08/content/EC/con...

1 of 2 3/28/2008 1:29 PM

ALP Executive Committee Report

Editor: Maria Garcia de la Banda
Secretary: David S. Warren

The ALP Executive Committee had its annual meeting during ICLP'07, in Portugal with
a very full agenda that included items such the upcoming ALP EC elections, the status
of the ALP domain name and website, the organisation of the current and next ICLP
conferences, and the creation of a Summer School.

The main points discussed/agreed during the meeting can be summarised as follows:

The ALP EC Elections will be held this fall with members Sandro Etalle, Gopal
Gupta, and Mirek Trusczcynski stepping down. A small subcommittee was set to
organise the elections
The committee welcomed the news that delay from acceptance to appearance at
the Journal of TPLP is decreasing. However, the journal is receiving fewer
submissions, and thus the committed is asked to encourage more submissions. It
was noted that papers published in TPLP are also permitted to appear on
authors' homepages. The committee further discussed the role of Journal vs.
Conference publications in the Computer Science community and the issues
raised when comparing CS publication records with those of other fields. It was
decided to explore the possibility of publishing the ICLP proceedings in a series,
thus giving it more of the prestige of a journal in the eyes of others.
Moshe Vardi is continuing his efforts to explore the possibility of a special interest
group in the ACM on logic, SigLog.
There are still difficulties in getting articles for the newsletter. The committee
would like to receive suggestions for people who could write historical
perspectives, to continue that ALP series.
The committee welcomed the proposal of a Logic Programming Summer School
by Enrico Pontelli to be held in Las Cruces, New Mexico. [PLEASE see the
article in this issue of the newsletter]
The committee is glad to report that the state of Logic Programming in Wikipedia
has significantly improved. However, more work is needed. In particular it needs
biographies (but not self-biographies.)
The Chair reported that the ALP finally has a domain name
(http://www.logicprogramming.org) but the website still needs significant work
to bring it up to date. Pat Hill volunteered to look into how the ALP website can be
improved and maintained. She suggested a mechanism that would get the
Newsletter content onto ALP Website automatically.
Regarding the status of ICLP conferences:

ICLP07 has been very successful. At the time of the meeting, there were
162 attendees including those for the Workshops and, thanks to help of
several sponsors, it will make a nice profit. While the number of submitted
papers to the Doctoral Consortium was smaller than hoped for, it is clear

Quarterly Report from the ALP Executive Committee http://www.cs.nmsu.edu/~epontell/backbone/February08/content/EC/con...

2 of 2 3/28/2008 1:29 PM

that the experience at was good. It was thus decided to continue it and to
further improve its advertising.
The ICLP'08 Co-PC chairs circulated a preliminary call for papers and rised
the issue of the exact definition of a "student paper". After a brief
discussion, it was recommended for a paper to be considered a Student
Paper if a student is the first author and that other authors certify that it is
indeed primarily the students work.
The committee would like to co-locate ICLP'09 with CP, IJCAI or AAAI, etc.
However, it was decided to delay any decisions until the new EC members
are elected, and the PC chair for ICLP09 is chosen.
It was agreed for ICLP'10 to be held with FLOC10, which will be in
Edinburgh.

 Copyright or other proprietary statement goes here.
For problems or questions regarding this Web site contact [ProjectEmail].

Last updated: 07/25/07.

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

1 of 17 3/28/2008 1:29 PM

Community News

List of News:
Systems Announcements

Datalog Educational System 1.5.0
Abella Theorem Prover

Books Announcements

Constraint Programming Letters - Second Volume

Other Announcements

CFP: Special Issue on Automated Deduction
Prolog BLOG
CHR Workshop - Call for Submissions
PhD Studentships at Kent University
European Agent Systems Summer School
Research Position in Bioinformatics
SUMO ATP Challenge
E.W.Beth Dissertation Prize
European Masters Program in Computational Logic
Ph.D. and PostDoc Position at the University of Leipzig

Software Announcement
Datalog Educational System 1.5.0

Communicated by Fernando Saenz Perez

URL: http://des.sourceforge.net/

Version 1.5.0 of DES adds to previous version (1.4.0):

Enhancements:

A more fine-grained debugging as long as individual clauses can be inspected

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

2 of 17 3/28/2008 1:29 PM

Warning and error messages provided for:
Undefined predicates which are called by rules each time the database is
changed
Unsafe rules
Execution exceptions known at compile-time

Exception messages provided for:
Execution exceptions unknown at compile-time

Rule transformation for allowing computation of safe rules which may raise
run-time exceptions due to built-ins
Rejection of unsafe or uncomputable queries, views and autoviews
Catching of instantiation errors
Rule source annotated for debugging and informative errors, i.e., file and lines in
the program (if consulted) or assertion time (if manually asserted)
Elapsed time display
New basic, simpler (although less efficient than the already implemented)
algorithm for computing stratified negation, following [SD91]
Fresh variables are given new variable names instead of numbers
New commands:

/negation Displays the selected algorithm for solving negation
/negation Algorithm Sets the required Algorithm for solving negation (strata
or et_not)
/timing Displays whether elapsed time display is enabled
/timing Switch Enables or disables elapsed time display (on or off, resp.)
/safe Displays whether program transformation is enabled
/safe Switch Enables or disables program transformation (on or off, resp.)

Changed commands:
/verbose Displays whether verbose output is enabled
/verbose Switch Enables or disables verbose output messages (on or off,
resp.)

Deprecated commands:
/noverbose

Slight modifications on existing commands:
/debug Goal Level The inspection level can be set with the second optional
argument with p for predicate level and c for clause level
/status Now, it also displays the selected algorithm for negation and
whether program transformation is enabled
/version For matching the "standard" display

New examples added to the directory examples
The Prolog database corresponding to the Datalog loaded programs has been
discarded, therefore using only one representation for them
Revised and upgraded user's manual

Changes:

Inequality built-ins cause an error and stops execution whenever they are
computed with any non-ground argument (formerly, they silently failed)

Fixed bugs:

The Linux version did not work. Now, it has been fixed and tested on Ubuntu
6.10, Kubuntu 7.04 (Feisty), and Mandriva Linux 2007 Spring
The parser did not detect that the argument of not could be a variable

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

3 of 17 3/28/2008 1:29 PM

Name clashes when loading programs and asserting rules are avoided

Special Issue Announcement
Journal of Symbolic Computation

Automated Deduction: Decidability, Complexity, Tractability

Communicated by V. Sofronie-Stokkermans

URL: http://www.mpi-inf.mpg.de/~sofronie/addct-special-issue.html

This special issue is devoted to the scope of the workshop ADDCT'07: Automated
Deduction: Decidability, Complexity, Tractability, which took place in Bremen
(Germany) on July 2007. Topics of interest include
(but are not restricted to):

Decidability:

decision procedures based on logical calculi such as: resolution, rewriting,
tableaux, sequent calculi, or natural deduction
decidability in combinations of logical theories
specialized decision procedures

Complexity:

complexity analysis for fragments of first- (or higher) order logic
complexity analysis for combinations of logical theories (including
parameterized complexity results)

Tractability (in logic, automated reasoning, algebra, ...)

Application domains for which complexity issues are essential (verification,
security, databases, ontologies, ...)

Submission procedure

Submission to this special issue is completely open. We expect original articles
(typically 15-30 pages; submission of larger papers will be evaluated depending on
editorial constraints) that present high-quality contributions that have not been
previously published in an archival venue and that must not be simultaneously
submitted for publication elsewhere.

Submissions must comply with JSC's author guidelines. They must be written in
English and should be prepared in LaTeX using the "Elsevier Article Class (elsart.cls)"
with "JSC add-on style (yjsco.sty)" and "Harvard style references (elsart-harv.bst)". The

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

4 of 17 3/28/2008 1:29 PM

package "JSC LaTex" (that contains all the necessary style files and a template) can
be obtained from http://www4.ncsu.edu/~hong/jsc/JSC_LaTex_2007_Mar_12.zip

The introduction of the paper MUST explicitly address the following questions in
succinct and informal manner:

What is the problem?
Why is the problem important?
What has so far been done on the problem?
What is the contribution of the paper on the problem?
Is the contribution original? Explain why.
Is the contribution non-trivial? Explain why.

Submission to this special issue are hereby encouraged via the EasyChair submission
system (http://www.easychair.org/conferences/?conf=addctjsc2008)..
The deadline for submissions is April 6th, 2008.

Guest editors:

 Silvio Ghilardi (U. Milano)
 Ulrike Sattler (U. Manchester)
 Viorica Sofronie-Stokkermans (MPI,Saarbruecken)
 Ashish Tiwari (Menlo Park)

Contact

For further informations please send an e-mail to Viorica Sofronie-Stokkermans (e-mail
sofronie@mpi-inf.mpg.de)

General Announcement
Prolog BLOG

Communicated by Tom Schrijvers

URL: http://www.cs.kuleuven.be/~toms/PlanetProlog/

I was wondering whether there are more Prolog and Logic Programming bloggers out
there? I started Planet Prolog, a blog aggregator for Prolog blogs:

http://www.cs.kuleuven.be/~toms/PlanetProlog/

If you also blog about Prolog or Logic Programming related stuff, and you'd like to join
Planet Prolog, please let me know and send me your name and the URI of your blog's
feed.

Thanks,

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

5 of 17 3/28/2008 1:29 PM

Tom

Workshop Announcement
Fifth Workshop on Constraint Handling Rules

Communicated by T. Schrijvers, T. Fruehwirth, F. Raiser

URL: http://www.uni-ulm.de/in/pm/research/events/chr2008

Location: Hagenberg, Austria

The Constraint Handling Rules (CHR) language has become a major declarative
specification and implementation language for constraint reasoning algorithms and
applications. Algorithms are often specified using inference rules, rewrite
rules, sequents, proof rules or logical axioms that can be directly written in CHR. Its
clean semantics facilitates program design, analysis and transformation. See the CHR
website (http://www.cs.kuleuven.be/~dtai/projects/CHR/) for more information.

Previous Workshops on Constraint Handling Rules were organized in May 2004 in Ulm
(Germany), in October 2005 in Sitges (Spain) at ICLP, in July 2006 in Venice (Italy) at
ICALP, and in September 2007 in Porto (Portgual) at ICLP.

Topics of Interest
The workshop calls for full papers and short papers describing ongoing work, on all
aspects of CHR, including topics such as:

(Logical) Algorithms
Applications
Comparisons with Related Approaches
Constraint Solvers
Critical Assessment
Expressivity and Complexity
Implementations and Optimization
Language Extensions (Types, Modules)
Program Analysis
Program Transformation and Generation
Programming Environments (Debugging)
Programming Pearls
Retractable Constraints
Semantics
Programming Tools
Language Extensions (Debugging)

Submission Information
All papers must be written in English and not exceed 15 pages in Springer LNCS

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

6 of 17 3/28/2008 1:29 PM

format. The authors are encouraged, although not obliged, to submit their papers
already in Springer LNCS format. General information about the Springer LNCS series
and the LNCS authors' instructions are available at the Springer LNCS/LNAI home
page.
Submissions should be sent to chr2008@uni-ulm.de and mention 'CHR 2008
Submission' in the subject. Every submission should include the names and e-mail
addresses of the authors (with the corresponding author indicated), the paper abstract
in ASCII format and the actual paper in postscript or PDF format. The
submission should also indicate whether it is a full paper or a short paper.
Accepted papers will be published in a technical report.

Important dates

submission: May 5, 2008
notification of acceptance: June 2, 2008
final version due: June 16, 2008
workshop date: July 14, 2008

Organization
Program Committee:

Francois Fages, INRIA Rocquencourt
Peter J. Stuckey, NICTA Victoria Laboratory
Jacques Robin, Universidade Federal de Pernambuco
Martin Sulzmann, National University of Singapore
Maurizio Gabbrielli, Universita di Bologna
Slim Abdennadher, German University in Cairo
Thom Fruehwirth, UniversitÃ¤t Ulm
Tom Schrijvers, Katholieke Universiteit Leuven
Armin Wolf, Fraunhofer FIRST, Berlin
Veronica Dahl, Simon Fraser University in Vancouver
Beata Sarna-Starosta, Michigan State University
Evelina Lamma, UniversitÃ di Ferrara

Workshop Coordinators:
chr2008@uni-ulm.de
Tom Schrijvers (contact person) Department of Computer Science K.U.Leuven
Thom Fruehwirth Faculty of Engineering and Computer Science University Ulm
Frank Raiser Faculty of Engineering and Computer Science University Ulm

Software Announcement
Abella: Interactive theorem proving with lambda-tree syntax

Communicated by Andrew Gacek

URL: http://abella.cs.umn.edu/

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

7 of 17 3/28/2008 1:29 PM

I am happy to announce the public release of Abella, an interactive theorem prover that
is designed to reason about structural operational semantics style specifications of
dynamic and static properties of an object language. Amongst other things, Abella has
been used to prove normalizability properties of the lambda calculus, cut-admissibility
for a sequent calculus and type uniqueness and subject reduction properties. The most
recent successes include solutions to parts 1a and 2a of the POPLmark challenge and
a proof of normalizability for the simply-typed lambda-calculus using a logical relations
argument in the style of Tait.

Abella is a realization of a two-level logic approach to reasoning in its application
domain. One level is defined by a specification logic that supports a transparent
encoding of structural operational semantics rules. This logic is a subset of the
language of Lambda Prolog and can therefore be animated. The second level, that is
called the reasoning logic, embeds the specification logic via definitions of atomic
judgments; complicated properties involving these atomic judgments can then be
stated and proved in the reasoning logic. An important characteristic of Abella is that it
supports the use of lambda-tree syntax in both the specification and the reasoning
logics in providing treatments of binding constructs in object language syntax.
Reasoning over lambda-tree syntax is supported by the nabla quantifier introduced by
Miller and Tiu and the notion of generic judgments. Abella also incorporates a newly
developed extension to the notion of definitions of McDowell and Miller that uses the
nabla quantifier to encode stronger properties about atomic judgments that are often
essential in reasoning tasks.

For more information, the Abella website includes walkthroughs, examples, downloads,
and related publications:

 http://abella.cs.umn.edu/

The distribution material also contains proofs of the various example properties
mentioned in this message.
I welcome your feedback and any questions you may have. Please contact me directly
at andrew.gacek@gmail.com.

Thank you,
Andrew Gacek

PhD Positions Announcement
Ph.D. Student Positions at Kent University

Communicated by Andy King

Funding is available for the following five PhD studentships within the TCS group at the

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

8 of 17 3/28/2008 1:29 PM

University of Kent. Applicants should contact the project supervisor directly for further
details.

Project Supervisor: Dr Eerke Boiten (E.A.Boiten@kent.ac.uk)
Project Title: Reasoning about Scratch Cards
Scratch cards are used widely in lotteries and games, and recently also in e-voting
protocols. However, public confidence in e-voting is very low. This research project can
make a difference by developing mathematical and logical abstractions of scratch
cards that allow formal reasoning, and consequently watertight proofs of the security of
protocols using them. This would be a great project if you are interested in practical
symbolic reasoning; knowledge of security, cryptography, formal methods, probability,
or logics would be a bonus.

Project Supervisor: Dr Olaf Chitil (O.Chitil@kent.ac.uk)
Project Title: Tracing Functional Programs with Hat
Hat (www.haskell.org/hat) is a sophisticated tool for locating faults in Haskell
programs. Hat consists of a trace generation system plus various tools for viewing a
trace. The aim of the research project is to improve Hat by both extending it and easing
its application in practise: (1) Apply several theoretical results of a recent EPSRC
project on tracing in Hat (e.g. algorithmic debugging with functions as finite maps). (2)
Integrate the trace generator of Hat into the byte code interpreter
of the Glasgow Haskell system (GHC). (3) Enable traced code to call and be called
from unmodified non-tracing code, such that Hat can use pre-compiled libraries of
GHC.

Project Title: The Essence of Transfinite Reductions
Project Supervisor: Dr Stefan Kahrs (S.M.Kahrs@kent.ac.uk)
Infinitary Rewriting is an area of Term Rewriting in which research has studied infinitary
terms and infinitary reductions. While the notion of infinitary terms is fairly settled, the
existing notions of infinitary reduction leave a lot to be desired - the definitions are
suspiciously complicated, the established results less than impressive. Thus, there
appears to be a lot of room for improvement. There are different angles that are worth
exploring. Firstly, there are several alternative ways to define transfinite reductions.
Secondly, one would hope that some of these alternative ways lead to good properties
of transfinite reduction. Thirdly, it is not even a priori clear what would constitute such a
good property.

Project Title: Finding Security Bugs in x86 code
Project Supervisor: Dr Andy King (A.M.King@kent.ac.uk)
The project will investigate how security vulnerabilities can be automatically located in
x86 code. Rather than trap a fault when it occurs as the program is running, the project
will devise compile-time techniques for locating faults before the program is executed.
The project will apply techniques from compiling, constraint solving and semantics,
though the applicant need not have expertise in all these fields.

Project Title: Refactoring Proofs
Project Supervisor: Prof Simon Thompson (S.J.Thompson@kent.ac.uk)
Refactoring allows the programmer to modify the design or structure of a program
without changing its behaviour. Recent work in the Functional Programming group at
Kent has developed refactoring systems for Haskell 98 (HaRe) and Erlang (Wrangler).
Programming and proof have much in common, and indeed under the "propositions as
types" analogy, they are different views of the same objects. The aim of this project is

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

9 of 17 3/28/2008 1:29 PM

to explore how refactoring can be incorporated into proof development systems, and
will combine theoretical work, implementation and usability analysis to ensure that the
results will be of value to users of proof assistants. The aim of this project is to
investigate refactoring for proofs.

Book Announcement
Constraint Programming Letters - Second Volume

Communicated by Marc van Dongen

URL: http://www.constraint-programming-letters.org/

The Constraint Programming Letters (CSPL) Journal is delighted to announce its
second volume, which is dedicated to recent advances in arc consistency.
The volume may be downloaded from the CPL website, which may be found at
http://www.constraint-programming-letters.org/

Content

Christophe Lecoutre and Julien Vion. Enforcing Arc Consistency using Bitwise
Operations. CPL, 2:21–35, 2008.
Christophe Lecoutre, Chavalit Likitvivatanavong, Scott G. Shannon, Roland H. C.
Yap, and Yuanlin Zhang. Maintaining Arc Consistency with Multiple Residues.
CPL, 2: 3–19, 2008.
Deepak Mehta. Reducing Checks and Revisions in the Coarse-grained Arc
Consistency Algorithms. CPL, 2:37–53, 2008.
M.R.C. van Dongen, A.B. Dieker, and A. Sapozhnikov. The Expected Value and
the Variance of the Checks Required by Revision Algorithms. CPL, 2:55–77,
2008.

Program Announcement
European Masters Program in Computational Logic

Communicated by Enrico Franconi

URL: http://www.computational-logic.eu/

The Faculty of Computer Science at the Free University of Bozen-Bolzano (FUB),
in Italy (at the heart of the Dolomites mountains in South-Tyrol), is offering the
European Masters Program in Computational Logic as part of its Master of

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

10 of 17 3/28/2008 1:29 PM

Science in Computer Science offer (Laurea Specialistica). The European Masters
Program in Computational Logic is an international distributed Master of Science
course, in cooperation with the computer science departments in the following
universities:

Free University of Bozen-Bolzano, Italy
Technische Universitaet Dresden, Germany
Universidade Nova de Lisboa, Portugal
Technische Universitaet Wien, Austria
Universidad Politecnica de Madrid, Spain

This program, completely in English, involves studying one year at the Free University
of Bozen-Bolzano, and completing the second year with a stay in one of the partner
universities. After this, the student will obtain, together with the European degree, two
Master of Science degrees: the Laurea Specialistica degree from the Free University
of Bozen-Bolzano, with legal value in Italy, and the respective Master of Science
degree from the visited university, with legal value in its country.

APPLICATION DEADLINES:

*** 31 May 2008 *** deadline for European and non-European students
(notification of acceptance: 15 June 2008)
22 August 2008: last deadline only for European students starting at the Free
University of Bozen-Bolzano, Italy (notification of acceptance: 5 September 2008)

SCHOLARSHIPS & MONEY SUPPORT:
European citizens can apply to scholarships which are granted purely on the basis of
the yearly income of the applicant and of her/his parents or husband/wife.
Scholarships may amount up to more than 6,000 EUR per academic year, plus
support on the accommodation and total reimbursement of the enrolment fees.
These scholarships are also available to non-European citizens with residence in
Italy. European students will also get a LLP Socrates Erasmus scholarship for the
second year of study abroad, which is 330 EUR per month.

NEW! Every year 10 students with European citizenship can visit Australia
(Canberra, Sidney, Melbourne or Brisbane) up to 3 months to work on a research
project, sponsored by the European Master. The study period in Australia is part of the
study programme and it is fully recognised by the European Master's Program
in Computational Logic. The guaranteed scholarship is of 3,100 EUR and it covers the
travel and living expenses in Australia.

The KRDB Research Centre offers the annual "IBM & KRDB" awards for the best
thesis on a Computational Logic related topic, which is generously sponsored by the
IBM Center for Advanced Studies; each winner will receive 500 EUR from IBM. In
addition to that, the Italian site in Rome of the IBM Center for Advanced Studies
supports scholarships of up to 2,400 EUR to work on a research project or on the
thesis at their labs in Rome.

Check the web page for detailed info on other available
scholarships:http://www.computational-logic.eu

THE STUDY PROGRAMME:

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

11 of 17 3/28/2008 1:29 PM

The European Masters Program in Computational Logic is designed to meet the
demands of industry and research in this rapidly growing area. Based on a solid
foundation in mathematical logic, theoretical computer science, artificial intelligence
and declarative programming students will acquire in-depth knowledge necessary
to specify, implement and run complex systems as well as to prove properties of
these systems. In particular, the focus of instruction will be in deduction systems,
knowledge representation and reasoning, artificial intelligence, formal specification
and verification, syntax directed semantics, logic and automata theory, logic and
computability. This basic knowledge is then applied to areas like logic and natural
language processing, logic and the semantic web, bioinformatics, information
systems and database technology, software and hardware verification. Students will
acquire practical experience and will become familiar in the use of tools within
these applications. In addition, students will be prepared for a future PhD, they will
come in contact with the international research community and will be integrated
into ongoing research projects. They will develop competence in foreign
languages and international relationships, thereby improving their social skills.

Applicants should have a Bachelor degree (Laurea triennale) in Computer
Science, Computer Engineering, or other relevant disciplines; special cases will be
considered. The programme is part of the Master in Computer Science (Laurea
Specialistica in Informatica) and it has various strengths that make it unique
amongst Italian and European universities:

Curriculum taught entirely in English: The programme is open to the world and
prepares the students to move on the international scene.
Possibility of a strongly research-oriented curriculum.
Possibility for project-based routes to obtain the degree and extensive lab
facilities.
Other specialisations with streams in the hottest Computer Science areas, such
as Web Technologies, Information and Knowledge Management, Databases and
Software Engineering.
International student community.
Direct interaction with the local and international industry and research centres,
with the possibility of practical and research internships that can lead to future
employment.
Excellent scholarship opportunities and student accommodations.

The European Masters Program in Computational Logic is sponsored scientifically
by the European Network of Excellence on Computational Logic (CoLogNET), the
European Association of Logic, Language and Information (FoLLI), the European
Coordinating Committee for Artificial Intelligence (ECCAI), the Italian
Association for Artificial Intelligence (AI*IA), the Italian Association for
Informatics (AICA, member of the Council of European Professional Informatics
Societies), the Italian Association for Logic and its Applications (AILA), and the
Portuguese Association for Artificial Intelligence (APPIA).

THE FREE UNIVERSITY OF BOZEN-BOLZANO:
The Free University of Bozen-Bolzano, founded in 1997, boasts modern premises in
the centre of Bozen-Bolzano. The environment is multilingual, South Tyrol being
a region where three languages are spoken: German, Italian and Ladin. Studying in a
multilingual area has shown that our students acquire the cutting edge needed in
the international business world. Many of our teaching staff hails from abroad.

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

12 of 17 3/28/2008 1:29 PM

Normal lectures are complemented with seminars, work placements and
laboratory work, which give our students a vocational as well as theoretical training,
preparing them for their subsequent professional careers. Studying at the Free
University of Bozen-Bolzano means, first and foremost, being guided all the way
through the student's educational career. Bozen-Bolzano, due to its enviable
geographical position in the centre of the Dolomites, also offers our students a
multitude of opportunities for spending their free-time. The city unites the
traditional with the modern. Young people and fashionable shops throng the city
centre where ancient mercantile buildings are an attractive backdrop to a city that is in
continual growth. To the south there is the industrial and manufacturing area with
prosperous small and medium-sized businesses active in every economic sector.
Back in the 17th century Bozen-Bolzano was already a flourishing mercantile city that,
thanks to its particular geographic position, functioned as a kind of bridge between
northern and southern Europe. As a multilingual town and a cultural centre
Bozen-Bolzano still has a lot to offer today. Its plethora of theatres, concerts with
special programmes, cinemas and museums, combined with a series of trendy night
spots that create local colour make Bozen-Bolzano a city that is beginning to cater
for its increasingly demanding student population. And if you fancy a very special
experience, go and visit the city's favourite and most famous resident - "Oetzi", the Ice
Man of Similaun, housed in his very own refrigerated room in the recently opened
archaeological museum.
Bozen-Bolzano and its surroundings are an El Dorado for sports lovers: jogging on the
grass alongside the River Talfer-Talvera, walks to Jenesien-S.Genesio and on the
nearby Schlern-Sciliar plateau, excursions and mountain climbing in the Dolomites,
swimming in the numerous nearby lakes and, last but not least, skiing and
snowboarding in the surrounding ski areas.

FURTHER INFORMATION:
Prof. Enrico Franconi or Dr. Sergio Tessaris at info@fub.computational-logic.eu

European Masters Program in Computational Logic
Faculty of Computer Science
Free University of Bozen-Bolzano
Piazza Domenicani, 3
I-39100 Bozen-Bolzano BZ, Italy

Phone: +39 0471 016 000
Fax: +39 0471 016 009
Email: info@fub.computational-logic.eu
Web site: http://www.computational-logic.eu

Summer School Announcement
10th European Agent Systems Summer School

Communicated by Joao Leite

URL: http://centria.di.fct.unl.pt/events/easss08/
LOCATION: New University of Lisbon, Portugal

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

13 of 17 3/28/2008 1:29 PM

DATE: 5-9 May, 2008

As its very successful predecessors, EASSS'08 aims to offer a valuable forum for
knowledge exchange between various research groups in this field for the benefit of
students and researchers at both beginner and advanced level. EASSS consists of a
mixture of introductory and advanced courses delivered by internationally leading
experts in multi-agent systems, and it covers the full range of theoretical and practical
aspects of multi-agent systems.

EASSS'08 will comprise the following courses:

Introduction to Multiagent Systems
Logics for Multiagent Systems
Trust and Reputation in Multiagent Systems
Service Oriented Agents
Introduction to Game Theory and Mechanism Design
Foundations of Institutions
Agents and Arguments
Computational Complexity in Multiagent Systems
Planning in Multiagent Systems
What Coalitions Can Achieve
Agent Oriented Software Engineering
Automated Negotiations in Electronic Markets
Agent Based Simulation for Social Studies
Normative Multiagent Systems
Wireless Sensor Networks and Multiagent Systems
Agent Swarms Generating Short-term Forecasts and Increasing Situational
Awareness

This summer school is open to anyone from academia or industry.
More information can be found at the webpage. Information regarding registration and
accomodation will be posted shortly.

Inquiries can be sent to easss08@gmail.com

Position Announcement
Research Position in Bioinformatics

Communicated by Pedro Barahona

URL: http://www.eracareers.pt/opportunities/index.aspx?task=global&jobId=8430

Applications are invited for SENIOR RESEARCHER positions in Bioinformatics, in a
multidisciplinary project involving Informatics, Structural Biochemistry, Molecular and
Cell Biology, Materials Science and Physics. The positions offered are for a 5 year
contract to work at CENTRIA, the Centre for Artificial Intelligence in the Faculty of
Science of the New University of Lisbon

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

14 of 17 3/28/2008 1:29 PM

The candidates must have earned a Ph.D. for more than 3 years, in the areas of
machine learning and data mining, constraint programming and optimisation,
simulation (including artificial life) or other Artificial Intelligence areas. In exceptional
cases, duly justified, we may consider accepting applicants with less than 3 years of
post-doctoral experience.

The candidates should be familiar with application of these techniques to bioinformatics
applications, namely for sequence matching and comparison, determination of protein
structure and interaction, analysis of metabolic pathways, assessment of philogenetic
trees, and be able to interact with scientists from within and outside of the Institution,
not only from the above mentioned research areas, but also from the areas of
Structural Biochemistry and Molecular and Cell Biology.

In addition to such interaction, the candidates are expected to help with post-graduate
teaching, including the supervision of post-graduate students, and to write research
papers as well as project and grant applications. For any further information contact
Prof. Pedro Barahona (pb@di.fct.unl.pt or address below).
Candidates will profit from the technical facilities and expertise available at CENTRIA,
at the Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, where they
will be stationed.

Please send detailed curriculum vitae and two reference letters to:
Prof. Luís Moniz Pereira
Director
Centro de Inteligência Artificial
Universidade Nova de Lisboa
Quinta da Torre
2825-516 Caparica
Portugal

Ph.D./PostDoc Announcement
Leipzig University

Communicated by Gerhard Brewka

Leipzig University has an open position in a DFG funded project entitled "Defaults and
Preferences in Action Formalisms". The position can be filled by a PhD student or a
postdoc. Funding is available for 2 years, but it is planned to apply for an extension
after the first period. This is a joint project with TU Dresden. Candidates must have a
good background in logic based AI.

For further information please contact Gerhard Brewka (brewka AT
informatik.uni-leipzig.de).

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

15 of 17 3/28/2008 1:29 PM

Prize Announcement
E.W.Beth Dissertation Prize

Communicated by Carlos Areces

URL: http://www.folli.org/

Since 2002, FoLLI (the European Association for Logic, Language, and Information,
www.folli.org) awards the E. W. Beth Dissertation Prize to outstanding
dissertations in the fields of Logic, Language, and Information. We invite submissions
for the best dissertation which resulted in a Ph.D. degree in the year 2007. The
dissertations will be judged on technical depth and strength, originality, and impact
made in at least two of the three fields of Logic, Language, and Computation.
Inter-disciplinarity is an important feature of the theses competing for the E. W. Beth
Dissertation Prize.

Who qualifies
Nominations of candidates are admitted who were awarded a Ph.D. degree in the
areas of Logic, Language, or Information between January 1st, 2007 and December
31st, 2007. There is no restriction on the nationality of the candidate or the university
where the Ph.D. was granted. After a careful consideration, FoLLI has decided to
accept only dissertations written in English. Dissertations produced in 2007 but not
written in English or not translated will be allowed for submission, after translation, also
with the call next year (for 2008). Respectively, nominations of full English translations
of theses originally written in other language than English and defended in 2006 and
2007 will be accepted for consideration this year, too.

Prize
The prize consists of:

a certificate
a donation of 2500 euros provided by the E. W. Beth Foundation.
an invitation to submit the thesis (or a revised version of it) to the new series of
books in Logic, Language and Information to be published by Springer-Verlag as
part of LNCS or LNCS/LNAI. (Further information on this series is available on
the FoLLI site)

How to submit
Only electronic submissions are accepted. The following documents are required:

the thesis in pdf or ps format (doc/rtf not accepted);1.
a ten page abstract of the dissertation in ascii or pdf format;2.
a letter of nomination from the thesis supervisor. Self-nominations are not
admitted: each nomination must be sponsored by the thesis supervisor. The
letter of nomination should concisely describe the scope and significance of the
dissertation and state when the degree was officially awarded;

3.

two additional letters of support, including at least one letter from a referee not
affiliated with the academic institution that awarded the Ph.D. degree.

4.

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

16 of 17 3/28/2008 1:29 PM

All documents must be submitted electronically to bethaward2008@gmail.com. Hard
copy submissions are not admitted.

In case of any problems with the email submission or a lack of notification within three
working days after submission, nominators should write to
goranko@maths.wits.ac.za or policriti@dimi.uniud.it.

Important dates
Deadline for Submissions: April 30th, 2008.
Notification of Decision: July 15th, 2008.

Committee :
Anne AbeillÃ© (UniversitÃ© Paris 7)
Natasha Alechina (University of Nottingham)
Didier Caucal (IGM-CNRS)
Nissim Francez (The Technion, Haifa)
Valentin Goranko (chair) (University of the Witwatersrand, Johannesburg)
Alexander Koller (University of Edinburgh)
Alessandro Lenci (University of Pisa)
Gerald Penn (University of Toronto)
Alberto Policriti (UniversitÃ di Udine)
Rob van der Sandt (University of Nijmegen)
Colin Stirling (University of Edinburgh)

Competition Announcement
The SUMO $100 Challenge

Communicated by Geoff Sutcliffe

The Suggested Upper Merged Ontology (SUMO), the SUMO midlevel (MILO)
ontology, and the SUMO domain ontologies, form the largest formal public ontology in
existence today. They are being used for research and applications in search,
linguistics and reasoning. SUMO is free and owned by the IEEE. The ontologies
that extend SUMO are available under GNU General Public License. Adam Pease of
Articulate Software is the Technical Editor of SUMO, and the sponsor of the SUMO
challenges.

The goal of the SUMO challenges is to verify the consistency of SUMO and its
extensions, or, if inconsistency is found, to provide feedback that is sufficient to
produce consistency (in a reasonable way). SUMO and its extensions have been
translated into the TPTP language, and are included in TPTP v3.4.0 as axiom files in
the commonsense reasoning domain. These axiom files form the input for the

Community News http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Comm...

17 of 17 3/28/2008 1:29 PM

challenges. There are three SUMO challenges:

Verify the consistency or provide feed to repair the base SUMO ontology. This is
the axiom file CSR003+0.ax.
Verify the consistency or provide feed to repair the combined SUMO and MILO
ontologies. These are the axiom files CSR003+0.ax and CSR003+1.ax
Verify the consistency or provide feed to repair the combined SUMO, MILO, and
domain ontologies. These are the axiom files CSR003+0.ax to CSR003+25.ax

The winners of the SUMO challenges will each receive $100 in real US dollars, to be
awarded at the CADE or IJCAR following successful completion of a challenge. Who
says there's no money in ATP?!

Logic-Programming Related Call for Papers

Contents

International Conference on Logic Programming (ICLP'08)
Principles and Practice of Declarative Programming (PPDP'08)
International Workshop on Functional and (Constraint) Logic
Programming (WFLP'08)
Joint European Conference on Logics in Artificial Intelligence
(JELIA'08)
Non-Monotonic Reasoning (NMR-08)
Reduction Strategies in Rewriting and Programming (WRS'08)
Principles of Knowledge Representation and Reasoning (KR'2008)
Logic-based Program Synthesis and Transformation (LOPSTR'08)
Workshop on Rule-based Programming (RULE'08)
Knowledge Representation for Agents and Multi-Agent Systems
(KRAMAS'08)
Evaluation of Systems for Higher Order Logic (ESHOL'08)
Applications of Semantic Technologies (AST 2008)
Computer Science Logic (CSL 2008)
International Conference on Automated Planning and Scheduling
(ICAPS'08)
Workshop on Security and Rewriting Techniques (SecReT'08)
International Verification Workshop (VERIFY'08)
Workshop on Logic and Search (LaSh08)
Foundations of Coordination Languages and Software Architectures
(FOCLASA'08)
Practical Aspects of Automated Reasoning (PAAR-2008)
Multi-Agent Systems and Bioinformatics (MAS&BIO'08)
International RuleML Symposium (RuleML'08)
International Semantic Web Conference (ISWC'08)
Knoweldge Representation Ontology Workshop (KROW 2008)
Multidisciplinary Workshop on Advanced in Preference Handling (M-
PREF'08)
Workshop on Search in Artificial Intelligence and Robotics
Asian Semantic Web Conference (ASWC'08)
Workshop on Logical Semantic Frameworks with Applications
(LSFA'08)

International Conference on Logic Programming

Date: December 9-13, 2008
Location: Udine, Italy
Submission Deadline: June 9, 2008
URL: http://iclp08.dimi.uniud.it

Page 1 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Principles and Practice of Declarative Programming

Date: July 15-17, 2008
Location: Valencia, Spain
Submission Deadline: April 10, 2008
URL: http://www.clip.dia.fi.upm.es/Conferences/PPDP08

Workshop on Rule-based Programming

Date: July 18, 2008
Location: Hagenberg Castle, Austria
Submission Deadline: April 14, 2008
URL: http://sewiki.iai.uni-bonn.de/rule08/

Workshop on Knowledge Representation for Agents and Multi-
Agent Systems

Date: September 16-19, 2008
Location: Sydney, Australia
Submission Deadline: June 1st, 2008
URL: http://www.cs.uu.nl/events/kramas2008/kramas.html

Workshop on Evaluation of Systems for Higher Order Logic

Date: August 10-11, 2008
Location: Sydney, Australia
Submission Deadline: May 19, 2008
URL: http://www.cs.miami.edu/~geoff/Conferences/ESHOL/

Application of Semantic Technologies

Date: September 9th, 2008
Location: Munich, Germany
Submission Deadline: April 25, 2008
URL: http://km.aifb.uni-karlsruhe.de/ws/ast2008

Page 2 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Computer Science Logic

Date: September 15-20, 2008
Location: Bertinoro, Italy
Submission Deadline: March 28, 2008
URL: http://csl2008.cs.unibo.it/

International Conference on Automated Planning and
Scheduling

Date: September 15-18, 2008
Location: Sydney, Australia
Submission Deadline: April 28, 2008
URL: http://icaps08.icaps-conference.org/

Workshop on Security and Rewriting Techniques

Date: June 22, 2008
Location: Pittsburgh, USA
Submission Deadline: March 31, 2008
URL: http://www.dsic.upv.es/workshops/secret08

International Verification Workshop

Date: August 10-11, 2008
Location: Sydney, Australia
Submission Deadline: May 15, 2008
URL: http://www.uni-koblenz.de/~beckert/verify08/

Reduction Strategies in Rewriting and Programming

Date: July 14, 2008
Location: Castle of Hagenberg, Austria
Submission Deadline: April 21, 2008

Page 3 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

URL: http://cl-informatik.uibk.ac.at/events/wrs08/

Workshop on Logic and Search

Date: Novermber 6-7, 2008
Location: Leuven, Belgium
Submission Deadline: August 15, 2008
URL: http://www.cs.kuleuven.be/~dtai/LaSh08

Foundations of Coordination Languages and Software
Architectures

Date: July 13, 2008
Location: Reykjavik, Iceland
Submission Deadline: April 14, 2008
URL: http://foclasa08.lcc.uma.es/

Workshop on Practical Aspects of Automated Reasoning

Date: August 10, 2008
Location: Sydney, Australia
Submission Deadline: May 27, 2008
URL: http://www.eprover.org/EVENTS/PAAR-2008/paar-2008.html

Multi-Agent Systems & Bioinformatics

Date: September 13, 2008
Location: Cagliari, Italy
Submission Deadline: May 18, 2008
URL: http://iasc2.diee.unica.it/masls2008/

International RuleML Symposium

Date: October 30-31, 2008
Location: Orlando, Florida

Page 4 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Submission Deadline: June 2, 2008
URL: http://2008.ruleml.org/

Principles of Knowledge Representation and Reasoning

Date: September 16-19, 2008
Location: Sydney, Australia
Submission Deadline: April 7, 2008
URL: http://www.cse.unsw.edu.au/~kr2008/

Logic-based Program Synthesis and Transformation

Date: July 17-18, 2008
Location: Valencia, Spain
Submission Deadline: May 7, 2008
URL: http://www.informatik.uni-kiel.de/~mh/lopstr08/

International Semantic Web Conference

Date: October 26-30, 2008
Location: Karlsruhe, Germany
Submission Deadline: May 9, 2008
URL: http://iswc2008.semanticweb.org/

Knowledge Representation Ontology Workshop

Date: September 16-19, 2008
Location: Sydney, Australia
Submission Deadline: June 1, 2008
URL: http://www.cse.unsw.edu.au/~kr2008/krow.html

Multidisciplinary Workshop on Advances in Preference Handling

Date: July 13-14, 2008
Location: Chicago, Illinois

Page 5 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Submission Deadline: April 7, 2008
URL: http://wikix.ilog.fr/wiki/bin/view/PreferenceWS/MdPref08

Workshop on Search in Artificial Intelligence and Robotics

Date: July 13-14, 2008
Location: Chicago, Illinois
Submission Deadline: April 7, 2008
URL:
http://www.uwosh.edu/faculty_staff/furcyd/search_symposium_2008

International Workshop on Functional and (Constraint) Logic
Programming

Date: July 3-4, 2008
Location: Siena, Italy
Submission Deadline: April 20, 2008
URL: http://wflp08.dimi.uniud.it/

Asian Semantic Web Conference

Date: December 8-11, 2008
Location: Pathumthani, Thailand
Submission Deadline: July 15, 2008
URL: http://www.aswc2008.org/

Joint European Conference on Logics in AI

Date: September 28-October 1, 2008
Location: Dresden, Germany
Submission Deadline: June 2, 2008
URL: http://www.jelia.eu/

Non Monotonic Reasoning Workshop

Date: September 13-16, 2008

Page 6 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Location: Sydney, Australia
Submission Deadline: June 15, 2008
URL: http://www.cse.unsw.edu.au/~kr2008/NMR2008/

Logical Semantic Frameworks with Applications

Date: August 26, 2008
Location: Salvador, Brasil
Submission Deadline: May 18, 2008
URL: http://www.mat.ufmg.br/lsfa2008

Page 7 of 7Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Calls/content.html

Papers to appear in TPLP and TOCL

Contents

TPLP regular papers
Transactions On Computational Logic (TOCL) regular papers

Theory and Practice of Logic Programming

http://www.logicprogramming.org/TPLP

Volume 8, Issue 1, January 2008

Regular Papers

Calculating modules in contextual logic program refinement, Robert Colvin,
Ian J. Hayes and Paul Strooper
Improving Precision of Type Analysis Using Non-Discriminative Union ,
Lunjin Lu.
Linear Tabling Strategies and Optimizations Neng-Fa Zhou, Taisuke Sato,
and Yi-Dong Shen

Technical Notes

Recurrence with affine level mappings is P-time decidable for binary CLP
(R) Fred Mesnard and Alexander Serebrenik

Programming Pearls:

Logic programming with satisfiability Michael Codish, Vitaly Lagoon and
Peter J. Stuckey

Volume 8, Issue 2, March 2008

Regular Papers

Experimenting with recursive queries in database and logic programming
systems, G. TERRACINA, N. LEONE, V. LIO and C. PANETTA
Logic programs with monotone abstract constraint atoms, VICTOR W.
MAREK, ILKKA NIEMELÄ and MIROSŁAW TRUSZCZYŃSKI

Technical Notes

Page 1 of 4Papers to appear in TPLP and TOCL

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Journals/conte...

Improving Prolog programs: Refactoring for Prolog, ALEXANDER
SEREBRENIK, TOM SCHRIJVERS and BART DEMOEN
A common view on strong, uniform, and other notions of equivalence in
answer-set programming, STEFAN WOLTRAN

Book Reviews:

Learn Prolog Now! Patrick Blackburn, Johan Bos, Kristina Striegnitz
College Publications, 2006,
 Bart Demoen
Constraint Logic Programming using ECLiPSe Krzysztof Apt and Mark
Wallace Cambridge University Press, 2007
 Peter J. Stuckey

Accepted Regular Papers
SWI-Prolog and the web
JAN WIELEMAKER, ZHISHENG HUANG and LOURENS VAN DER MEIJ
TCHR: a framework for tabled CLP
TOM SCHRIJVERS, BART DEMOEN and DAVID S. WARREN
Translating OWL and semantic web rules into prolog: Moving toward
description logic programs
KEN SAMUEL, LEO OBRST, SUZETTE STOUTENBERG, KAREN FOX,
PAUL FRANKLIN, ADRIAN JOHNSON, KEN LASKEY, DEBORAH
NICHOLS, STEVE LOPEZ and JASON PETERSON
Querying XML documents in logic programming
J. M. ALMENDROS-JIMÉNEZ, A. BECERRA-TERÓN and F. J. ENCISO-
BAÑOS
Query evaluation and optimization in the semantic web
EDNA RUCKHAUS, EDUARDO RUIZ and MARÍA-ESTHER VIDAL
Building Rules on Top of Ontologies for the Semantic Web with Inductive
Logic Programming
FRANCESCA A. LISI
Guarded hybrid knowledge bases
STIJN HEYMANS, JOS DE BRUIJN, LIVIA PREDOIU, CRISTINA FEIER
and DAVY VAN NIEWENBORGH

ACM Transactions on Computational Logic

http://www.acm.org/tocl

The files below are the final versions of the papers submitted by the authors. The
definite, published versions of the papers are available from the TOCL home
page within the ACM Digital Library.

Volume 9, Number 3 (tentative)

Page 2 of 4Papers to appear in TPLP and TOCL

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Journals/conte...

A Uniform Approach to Constraint-solving for Lists, Multisets,
Compact Lists, and Sets Agostino Dovier, Carla Piazza, and Gianfranco
Rossi
Foundational Certified Code in the Twelf Metalogical Framework Karl
Crary and Susmit Sarkar
Inferring Non-Suspension Conditions for Logic Programs with
Dynamic Scheduling Samir Genaim and Andy King
Program Termination and Well Partial Orderings Andreas Blass and
Yuri Gurevich
Abstract State Machines Capture Parallel Algorithms: Correction and
Extension Andreas Blass and Yuri Gurevich
What Causes a System to Satisfy a Specification? Hana Chockler,
Joseph Y. Halpern and Orna Kupferman
Proof Search in Hajek's Basic Logic Simone Bova and Franco Montagna
Conjunctive Query Containment and Answering under Description
Logics Constraints Diego Calvanese, Giuseppe De Giacomo and
Maurizio Lenzerini
Contextual Modal Type Theory Aleksandar Nanevski, Frank Pfenning
and Brigitte Pientka

Volume 9, Number 4 (tentative)

Complexity Results for Security Protocols with Diffie-Hellman
Exponentiation and Commuting Public Key Encryption Yannick
Chevalier, Ralf Kuesters, Michael Rusinowitch and Mathieu Turuani
Undecidability of the Unification and Admissibility Problems for
Modal and Description Logics Frank Wolter and Michael Zakharyaschev
Open Answer Set Programming with Guarded Programs Stijn
Heymans, Davy Van Nieuwenborgh and Dirk Vermeir
Reasoning with Recursive Loops under the PLP Framework Yi-Dong
Shen
Flat and One-Variable Clauses: Complexity of Verifying Cryptographic
Protocols with Single Blind Copying Helmut Seidl and Kumar Neeraj
Verma
Verifiable Agent Interaction in Abductive Logic Programming: the
SCIFF Framework Marco Alberti, Federico Chesani, Marco Gavanelli,
Evelina Lamma, Paola Mello and Paolo Torroni

Future Issues (the order of the papers can change)

Specifying Norm-Governed Computational Societies Alexander Artikis,
Marek Sergot and Jeremy Pitt
Arithmetic Complexity Lou van den Dries and Yiannis N. Moschovakis
Certainty Closure: Reliable Constraint Reasoning with Incomplete or
Erroneous Data Neil Yorke-Smith and Carmen Gervet
New Results on Rewrite-based Satisfiability Procedures Alessandro
Armando, Maria Paola Bonacina, Silvio Ranise and Stephan Schulz
Reasoning about Actions with Sensing under Qualitative and
Probabilistic Uncertainty Luca Iocchi, Thomas Lukasiewicz, Daniele
Nardi and Riccardo Rosati

Page 3 of 4Papers to appear in TPLP and TOCL

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Journals/conte...

A Finite Equational Base for CCS with Left Merge and Communication
Merge Luca Aceto, Wan Fokkink, Anna Ingolfsdottir and Bas Luttik
Logical Characterization of the Counting Hierarchy Juha Kontinen
The Geometry of Linear Higher-Order Recursion Ugo Dal Lago
Probabilistic Bisimulation as a Congruence Ruggero Lanotte and
Simone Tini
Extending the LOOP language with Higher-Order Procedural Variables
T. Crolard, E. Polonowski and P. Valarcher
Termination of Rewriting Strategies: a Generic Approach Isabelle
Gnaedig and Hélène Kirchner (Electronic Appendix)
A Compositional Semantics for CHR Maurizio Gabrielli and Maria Chiara
Meo
Proofs, Tests and Continuation Passing Style Stefano Guerrini and
Andrea Masini
A Flow Calculus of mwp-Bounds for Complexity Analysis Neil D.
Jones and Lars Kristiansen
PSPACE Bounds for Rank-1 Modal Logics Lutz Schröder and Dirk
Pattinson
Context Semantics, Linear Logic and Computational Complexity Ugo
Dal Lago
On the Proof Complexity of Deep Inference Paola Bruscoli and Alessio
Guglielmi
A New Function Algebra of EXPTIME Functions by Safe Nested
Recursion Toshiyasu Arai and Naohi Eguchi
Checking Timed Büchi Automata Emptiness on Simulation Graphs
Stavros Tripakis

 Copyright or other proprietary statement goes here.
For problems or questions regarding this Web site contact [ProjectEmail].

Last updated: 07/25/07.

Page 4 of 4Papers to appear in TPLP and TOCL

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Journals/conte...

Accepted Papers in
Logic-Programming Related Conference

Contents

Theory and Applications of Satisfiability Testing (SAT'08)
Coordination Models and Languages (Coordination'08)
European Semantic Web Conference (ESWC'08)
Declarative Agent Languages and Technology (DALT'08)
Temporal Representation and Reasoning (TIME'08)
Computability in Europe (CiE 2008)
European Symposium on Programming (ESOP'08)

Theory and Applications of Satisfiability Testing
Guangzhou, China, May 12-15, 2008

http://www.ist.unomaha.edu/padl2008/

Accepted Papers

Searching for Autarkies to Trim Unsatisfiable Clause Sets
 Mark Liffiton and Karem Sakallah
A CNF Class Generalizing Exact Linear Formulas
 Stefan Porschen and Ewald Speckenmeyer
Finding Guaranteed MUSes Fast
 Hans van Maaren and Siert Wieringa
Complexity and Algorithms for Well-Structured k-SAT Instances
 Konstantinos Georgiou and Periklis A. Papakonstantinou
Modelling Max-CSP as Partial Max-SAT
 Josep Argelich, Alba Cabiscol, Inês Lynce, and Felip Manyà
A Max-SAT Inference-Based Pre-processing for Max-Clique
 Federico Heras and Javier Larrosa
A Preprocessor for Max-SAT Solvers
 Josep Argelich, Chu Min Li, and Felip Manyà
Towards More Effective Unsatisfiability-Based Maximum Satisfiability
Algorithms
 Joao Marques-Silva and Vasco Manquinho
Designing an Efficient Hardware Implication Accelerator for SAT Solving
 John Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang
Attacking Bivium Using SAT Solvers
 Tobias Eibach, Enrico Pilz, and Gunnar Völkel
New Results on the Phase Transition for Random Quantified Boolean

Page 1 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Formulas
 Nadia Creignou, Hervé Daudé, Uwe Egly, and Raphaël Rossignol
Nenofex: Expanding NNF for QBF Solving
 Florian Lonsing and Armin Biere
Improvements to Hybrid Incremental SAT Algorithms
 Florian Letombe and Joao Marques-Silva
Random Instances of W[2]-Complete Problems: Thresholds, Complexity,
and Algorithms
 Yong Gao
A Generalized Framework for Conflict Analysis
 G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais
Adaptive Restart Strategies for Conflict Driven SAT Solvers
 Armin Biere
Local Restarts
 Vadim Ryvchin and Ofer Strichman
A Decision-Making Procedure for Resolution-Based SAT-Solvers
 Eugene Goldberg
Speeding-Up Non-clausal Local Search for Propositional Satisfiability with
Clause Learning
 Zbigniew Stachniak and Anton Belov
SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and
Commercial Solvers
 Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodríguez-Carbonel
SAT(ID): Satisfiability of Propositional Logic Extended with Inductive
Definitions
 Maarten Mariën, Johan Wittocx, Marc Denecker, and Maurice
Bruynooghe
The OKlibrary: A generative research platform for (generalised) SAT
solving
 Oliver Kullmann
Online Estimation of SAT Solving Runtime
 Shai Haim and Toby Walsh
How Many Conflicts Does It Need to Be Unsatisfiable?
 Dominik Scheder and Philipp Zumstein
Computation of Renameable Horn Backdoors
 Stephan Kottler, Michael Kaufmann, and Carsten Sinz
A New Bound for an NP-Hard Subclass of 3-SAT Using Backdoors
 Stephan Kottler, Michael Kaufmann, and Carsten Sinz
CNF Encoding for Adjacencies in Boolean Cardinality Constraint
 Sachoun Park and Gihwon Kwon

Coordination Models and Languages

Oslo, Norway, June 4-6, 2008

http://discotec08.ifi.uio.no/pmwiki.php?n=Coordination08.HomePage

Accepted Papers

Page 2 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Timed Soft Concurrent Constraint Programs
Francesco Santini, Stefano Bistarelli, Maurizio Gabbrielli and Maria Chiara
Meo
How to infer finite session types in a calculus of services and sessions
Leonardo Gaetano Mezzina
Advice for Coordination
Chris Hankin, Fleming Nielson, Hanne Riis Nielson and Fan Yang
A formal account of WS-BPEL
Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi
Implementing Session Centered Calculi with IMC
Lorenzo Bettini, Rocco De Nicola and Michele Loreti
Formalizing Higher-order Mobile Embedded Business Processes with
Binding Bigraphs
Mikkel Bundgaard, Arne Glenstrup, Thomas Hildebrandt, Espen Højsgaard
and Henning Niss
Actors with Multi-Headed Message Receive Patterns
Martin Sulzmann, Edmund Lam and Peter Van Weert
A compositional trace semantics for Orc
Dimitrios Vardoulakis and Mitchell Wand
Service Combinators for Farming Virtual Machines
Karthikeyan Bhargavan, Andy Gordon and Iman Narasamdya
A coordination model for service-oriented interactions
João Abreu and José Luiz Fiadeiro
Encrypted Shared Data Spaces
Giovanni Russello, Changyu Dong, Naranker Dulay, Michel Chaudron and
Maarten Van Steen
An event-based coordination model for context-aware applications
Angel Nuñez and Jacques Noyé
Session Behaviour Types for Orchestration Charts
Alessandro Fantechi and Elie Najm
CiAN: A Workflow Engine for MANETs
Rohan Sen, Catalin Roman and Christopher Gill
A Process Calculus for Mobile Ad Hoc Networks
Anu Singh, C. R. Ramakrishnan and Scott A. Smolka
Multiparty sessions in SOC
Roberto Bruni, Ivan Lanese, Hernan Melgratti and Emilio Tuosto
Implementing Joins using Extensible Pattern Matching
Philipp Haller and Tom Van Cutsem
Modeling and Analysis of Reo Connectors Using Alloy
Ramtin Khosravi, Marjan Sirjani, Nesa Asoudeh, Shaghayegh Sahebi and
Hamed Iravanchi zadeh
Alternating-Time Model Checking for Exogenous Coordination
Sascha Klueppelholz and Christel Baier
From Flow Logic to Static Type Systems for Coordination Languages
Rocco De Nicola, Daniele Gorla, Rene Rydhof Hansen, Fleming Nielson,
Hanne Riis Nielson, Christian W. Probst and Rosario Pugliese
Formal analysis of BPMN via a translation into COWS
Davide Prandi, Paola Quaglia and Nicola Zannone

Page 3 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

European Semantic Web Conference
Tenerife, Spain, June 1-5, 2008

http://www.eswc2008.org/

Accepted Papers

Andre Bolles, Marco Grawunder and Jonas Jacobi. Streaming SPARQL -
Extending SPARQL to process data streams
Glen Hart, Martina Johnson and Catherine Dolbear. Rabbit: Developing a
Control Natural Language for Authoring Ontologies
Yolanda Blanco-Fernandez, José J. Pazos-Arias, Alberto Gil-Solla, Manuel
Ramos-Cabrer and Martin Lopez-Nores. Semantic Reasoning: A Path To
New Possibilities of Personalization
Edoardo Pignotti, Peter Edwards, Alun Preece, Nick Gotts and Gary Polhill.
Enhancing Workflow with a Semantic Description of Scientist's Intent
Boontawee Suntisrivaraporn. Module Extraction and Incremental
Classification: A Pragmatic Approach for EL+ Ontologies
Christoph Kiefer, Abraham Bernstein and André Locher. Adding Data
Mining Support to SPARQL via Statistical Relational Learning Methods
Caecilia Zirn, Vivi Nastase and Michael Strube. Distinguishing between
Instances and Classes in the Wikipedia Taxonomy
Jun Zhao, Graham Klyne and David Shotton. Building a Semantic Web
Image Repository for Biological Research Images
Idoia Berges, Jesus Bermudez, Alfredo Goñi and Arantza Illarramendi.
Semantic Web technology for Agent Communication Protocols
Yannis Tzitzikas, Yannis Theoharis and Dimitris Andreou. On Storage
Policies for Semantic Web Repositories that Support Versioning
Eero Hyvönen, Kim Viljanen, Jouni Tuominen and Katri Seppälä. Building a
National Semantic Web Ontology and Ontology Service Infrastructure-The
FinnONTO Approach
Zhe Wang, Kewen Wang, Rodney Topor and Jeff Z. Pan. Restricting and
forgetting in DL-Lite
Haofen Wang, Kang Zhang, Qiaoling Liu, Duc Thanh Tran and Yong Yu.
Q2Semantic: A Lightweight Keyword Interface to Semantic Search
Kay-Uwe Schmidt, Jörg Dörflinger, Tirdad Rahmani, Mehdi Sahbi, Susan
Thomas and Ljiljana Stojanovic. An User Interface Adaptation Architecture
for Rich Internet Applications
Silvana Castano, Alfio Ferrara, Davide Lorusso, Tobias Henrik Näth and
Ralf Moeller. Mapping Validation by Probabilistic Reasoning
Tomi Kauppinen, Jari Väätäinen and Eero Hyvönen. Creating and Using
Geospatial Ontology Time Series in a Semantic Cultural Heritage Portal
Vassilis Spiliopoulos, Alexandros Valarakos and George Vouros. CSR:
Discovering Subsumption Relations for the Alignment of Ontologies
Ravish Bhagdev, Sam Chapman, Fabio Ciravegna, Vitaveska Lanfranchi
and Daniela Petrelli. Hybrid Search: Effectively Combining Keywords and
Ontology-based Searches
Naiwen Lin, Ugur Kuter and Evren Sirin. Web Service Composition with

Page 4 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

User Preferences
Waseem Akhtar, Jacek Kopecky, Thomas Krennwallner and Axel Polleres.
XSPARQL: Traveling between the XML and RDF worlds – and avoiding the
XSLT Pilgrimage
Reinhard Pichler, Axel Polleres, Fang Wei and Stefan Woltran. dRDF:
Entailment for Domain-restricted RDF
Heeryon Cho, Toru Ishida, Toshiyuki Takasaki and Satoshi Oyama.
Assisting Pictogram Selection with Semantic Interpretation
Christoph Kiefer and Abraham Bernstein. The Creation and Evaluation of
iSPARQL Strategies for Matchmaking
Matthias Bräuer and Henrik Lochmann. An Ontology for Software Models
and its Practical Implications for Semantic Web Reasoning
Katharina Siorpaes and Martin Hepp. OntoGame: Weaving the Semantic
Web by Online Games
Aurona Gerber, Alta Van der Merwe and Andries Barnard. A Functioal
Semantic Architecture
VinhTuan Thai, Siegfried Handschuh and Stefan Decker. IVEA: An
Information Visualization Tool for Personalized Exploratory Document
Collection Analysis
Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL
Stefan Dietze, Alessio Gugliotta and John Domingue. Conceptual Situation
Spaces for Semantic Situation-Driven Processes
Antoine Isaac, Henk Matthezing, Lourens van der Meij, Stefan Schlobach,
Shenghui Wang and Claus Zinn. Putting ontology alignment in context:
usage scenarios, deployment and evaluation in a library case
Valentin Tablan, Danica Damljanovic and Kalina Bontcheva. A Natural
Language Query Interface to Structured Information
Kinga Schumacher, Michael Sintek and Leo Sauermann. Combining Fact
and Document Retreival with Spreading Activation for Semantic Desktop
Search
Tudor Groza, Siegfried Handschuh, Knud Möller and Stefan Decker.
KonneX-SALT: First Steps towards a Semantic Claim Federation
Infrastructure
Dumitru Roman, Michael Kifer and Dieter Fensel. WSMO Choreography:
From Abstract State Machines to Concurrent Transaction Logic
Andreas Langegger, Wolfram Wöß and Martin Blöchl. A Semantic Web
middleware for Virtual Data Integration on the Web
Paolo Bouquet, Heiko Stoermer and Barbara Bazzanella. An Entity Naming
System (ENS) for the Semantic Web
Gunnar Grimnes, Peter Edwards and Alun Preece. Istance Based
clustering of Semantic Web Resources
Claudia d'Amato, Nicola Fanizzi and Floriana Esposito. Query Answering
and Ontology Population: an Inductive Approach
Anthony Ventresque, Sylvie Cazalens, Philippe Lamarre and Patrick
Valduriez. Improving interoperability using query interpretation in semantic
vector spaces
Ernesto Jimenez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas
Schneider and Rafael Berlanga-Llavori. Safe and Economic re-use of
ontologies: a logic-based methodology and tool support
Nicola Fanizzi, Claudia d'Amato and Floriana Esposito. Conceptual

Page 5 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Clustering and its Application to Concept Drift and Novelty Detection
Tomas Vitvar, Jacek Kopecky, Jana Viskova and Dieter Fensel. WSMO-
Lite Annotations for Web Services
Mauricio Espinoza, Asunción Gómez-Pérez and Eduardo Mena. Enriching
an Ontology with Multilingual Information
Riccardo Rosati. Finite model reasoning in DL-Lite
Carlos Pedrinaci, John Domingue and Ana Karla Alves de Medeiros. A
Core Ontology for Business Process Analysis
Sebastian Dietzold, Jörg Unbehauen and Sören Auer. xOperator -
Interconnecting the Semantic Web and Instant Messaging Networks
Simon Scerri, Siegfried Handschuh and Stefan Decker. Semantic Email as
a communication medium for the Social Semantic Desktop
Angela Maduko, Kemafor Anyanwu, Amit Sheth and Paul Schliekelman.
Graph Summaries for Subgraph Frequency Estimation
Laura Hollink, Mark van Assem, Antoine Isaac, Shenghui Wang and Guus
Schreiber. Two Variations on Ontology Alignment Evaluation:
Methodological Issues
Richard Cyganiak, Renaud Delbru, Holger Stenzhorn, Giovanni
Tummarello and Stefan Decker. Semantic Sitemaps: Efficient and Flexible
Access to Datasets on the Semantic Web
Dimitrios Kourtesis and Iraklis Paraskakis. Combining SAWSDL, OWL-DL
and UDDI for Semantically Enhanced Web Service Discovery

Declarative Agent Languages and Technology

Estoril, Portugal, May 12, 2008

http://www.di.unito.it/%7Ebaldoni/DALT-2008/

Accepted Papers

A complete STIT logic for knowledge and action, and some of its
applications
Jan Broersen
Combining Multiple Knowledge Representation Technologies into Agent
Programming Languages
Mehdi Dastani, Koen V. Hindriks, Peter Novak, and Nick Tinnemeier
Model-checking strategic ability and knowledge of the past of
communicating coalitions
Dimitar P. Guelev and Catalin Dima
JASDL: A Practical Programming Approach Combining Agent and
Semantic Web Technologiess
Thomas Klapiscak and Rafael H. Bordini
Leveraging new plans in AgentSpeak(PL)
Felipe Meneguzzi and Michael Luck
Increasing bid expressiveness for effective and balanced e-barter trading
Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, and Francesco

Page 6 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

M. Donini
Inductive Negotiation in Answer Set Programming
Chiaki Sakama
Mental State Abduction of BDI-Based Agents
Michal P. Sindlar, Mehdi M. Dastani, Frank Dignum, and John-Jules Ch.
Meyer
Iterated Belief Revision In the face of Uncertain Communication
Yoshitaka Suzuki, Satoshi Tojo, and Stijn De Saeger
Abstracting and Verifying Strategy-proofness for Auction Mechanisms
Emmanuel M. Tadjouddine, Frank Guerin, and Wamberto Vasconcelos

Short presentations

Formalising Proactive Maintenance Goals
Simon Duff and James Harland
Using Temporal Logic to integrate Goals and Qualitative Preferences into
Agent Programming
Koen V. Hindriks and M. Birna van Riemsdijk
A Framework for Agent Communication based on Goals and
Argumentation
Mohamed Mbarki, Jamal Bentahar, John-Jules Meyer, and Bernard Moulin
Agent Communicability in Belief Update Logic
Mikito Kobayashi and Satoshi Tojo

Temporal Representation and Reasoning

Montreal, Canada, June 16-18, 2008

http://www.time2008.org/

Accepted Papers

Topology-based Variable Ordering Strategy for Solving Disjunctive
Temporal Problems
 Yuechang Liu, Yunfei Jiang
Efficient Bit-Level Model Reductions for Automated Hardware Verification
 Sergey Tverdyshev, Eyad Alkassar
The complexity of CARET + Chop
 Laura Bozzelli
Good friends are hard to find!
 Thomas Brihaye, Mohamed Ghannem, Nicolas Markey, Lionel Rieg
TLP-GP : solving temporally-expressive planning problems
 Frederic Maris, Pierre Regnier
Efficient Spatio-temporal Similarity Join of Large Sets of Moving Object
Trajectories
 Hui Ding, Goce Trajcevski, Peter Scheuermann
Practical First-Order Temporal Reasoning

Page 7 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

 Michael Fisher, Clare Dixon, Alexei Lisitsa, Boris Konev
A Labeled Tableaux System for the Distributed Temporal Logic DTL
 Luca Vigano, David Basin, Carlos Caleiro, Jaime Ramos
Labeled Natural Deduction Systems for a Family of Tense Logics
 Luca Vigano, Marco Volpe
An optimal tableau for Right Propositional Neighborhood Logic over trees
 Pietro Sala, Davide Bresolin, Angelo Montanari
Decomposition of Decidable First-Order Logics over Integers and Reals
 Florent Bouchy, Jérôme Leroux, Alain Finkel

Accepted short papers

Regarding Overlapping as a Basic Concept of Subset Spaces
 Bernhard Heinemann
A Heuristic Approach to Order Events in Narrative Texts
 Farid Nouioua
Satisfying a Fragment of XQuery by Branching-Time Reduction
 Sylvain Hallé, Roger Villemaire
Moving Spaces
 Michael Winter, Ivo Duentsch
Time Aware Mining of Itemsets
 Bashar Saleh, Florent Masseglia
A Greedy Approach Towards Parsimonious Temporal Aggregation
 Juozas Gordevicius, Johann Gamper, Michael Boehlen
Towards a Formal Framework for Spatio-Temporal Granularities
 Gabriele Pozzani, Carlo Combi, Alberto Belussi
Representing Public Transport Schedules as Repeating Trips
 Romans Kasperovics, Michael Boehlen, Johann Gamper

Computability in Europe
Athens, Greece, June 15-20, 2008

http://www.cs.swan.ac.uk/cie08/

Accepted Papers

Grazyna Zwozniak Induced matchings in graphs of maximum degree
three
Keita Yokoyama Reverse Mathematics for Fourier Expansion
Guohua Wu and Jiang Liu Joining to High Degrees
Joost Winter Space Complexity in Ordinal Turing Machines
Michael Weiss and Gregory Lafitte Simulations Between Tilings
Daniel Ventura, Mauricio Ayala-Rincon and Fairouz Kamareddine
Principal Typings for Explicit Substitutions Calculi
Alina Vasilieva Quantum Query Algorithms for AND and OR Boolean

Page 8 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Functions
Guillaume Theyssier and Mathieu Sablik Topological Dynamics of 2D
Cellular Automata
Hayato Takahashi and Kazuyuki Aihara Probabilistic machines vs.
relativized computation
Ákos Tajti and Benedek Nagy Solving Tripartite Matching by Interval-
valued Computation in Polynomial Time
Kohtaro Tadaki A statistical mechanical interpretation of algorithmic
information theory
Mariya Ivanova Soskova Cupping Classes of Sigma 2 Enumeration
Degrees
Alexandra Soskova Omega Degree Spectra
Michael Soltys and Craig Wilson On the complexity of computing winning
strategies for finite poset games
Boris Solon Almost partial m-reducibility
Victor Selivanov and Klaus W. Wagner Complexity of aperiodicity for
topological properties of regular ω-languages
Zenon Sadowski Optimal proof systems and complete languages
Krishna S, Lakshmi Manasa G and Kumar Nagaraj Updatable Timed
Automata with Additive and Diagonal Constraints
Krishna S and Gabriel Ciobanu On the Computational Power of
Enhanced Mobile Membranes
Vladimir Rybakov and Sergei Babyonyshev Decidability of Hybrid Logic
with Local Common Knowledge based on Linear Temporal Logic LTL
Alexandra Revenko Autostability of Automatic Linear Orders
Daowen Qiu Simulations of Quantum Turing Machines by Quantum
Multi-Counter Machines
Vadim Puzarenko Properties on Admissible Sets
Mihai Prunescu Polynomial iterations over finite fields
Petrus H. Potgieter Computable counter-examples to the Brouwer fixed-
point theorem
Sergei Podzorov Upper Semilattices in Many-One Degrees
Camelia Pintea, Petrica Claudiu Pop, Camelia Chira, Dan Dumitrescu and
Corina Pop Sitar An efficient ant colony optimization algorithm for solving
the airport gate assignment problem
Yongri Piao, Seoktae Kim and Sung-Jin Cho Two-Dimensional Cellular
Automata Transforms for a Novel Edge Detection
Florian Pelupessy and Andreas Weiermann Classifying the phase
transition threshold for unordered regressive Ramsey numbers
Nicolas Ollinger Two-by-two Substitution Systems and the Undecidability
of the Domino Problem
Vivek Nigam Using Tables to Construct Non-Redundant Proofs
Takako Nemoto Complete Determinacy and Subsystems of Second
Order Arithmetic
Marcin Mostowski Limiting recursion, FM--repressentability, and
hypercomputations
Russell Miller and Dustin Mulcahey Perfect Local Computability and
Computable Simulations
Barnaby Martin First-Order Model Checking Problems Parameterized by
the Model
Angelos Manousaridis, Michalis Papakyriakou and Nikolaos Papaspyrou

Page 9 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

From Program Verification to Certified Binaries
Johann Makowsky From Hilbert's Program to a Logic Toolbox
Iris Loeb Factoring out Intuitionistic Theorems: Continuity Principles and
the Uniform Continuity Theorem
Chung-Chih Li Query-Optimal Oracle Turing Machines for Type-2
Computations
Maikel Leon, Isis Bonet and Zenaida Garcia Combining Concept Maps
and Petri Nets to Generate Intelligent Tutoring Systems
Stephane Le Roux Discrete Non Determinism and Nash Equilibria for
Strategy-Based Games
James Lathrop, Jack H. Lutz, Matthew J. Patitz and Scott M. Summers
Computability and Complexity in Self-Assembly
Sunil Kothari and James Caldwell On Extending Wand's Type
Reconstruction Algorithm to Handle Polymorphic Let
Margarita Korovina and Nicolai Vorobjov Safety Properties Verification
for Pfaffian Dynamics
Peter Koepke and Russell Miller An Enhanced Theory of Infinite Time
Register Machines
Bakhadyr Khoussainov, Michael Brough and Peter Nelson Sequential
Automatic Algebras
Basil A. Karadais A Plotkin Definability Theorem for Atomic-Coherent
Information Systems
Temesghen Kahsai and Marino Miculan Implementing Spi Calculus
using Nominal techniques
Reinhard Kahle Towards Reverse Proofs-as-Programs
Herman Ruge Jervell Ordering finite labeled trees
ilyes jenhani, Zied Elouedi and Salem Benferhat The Use of Information
Affinity in Possibilistic Decision Tree Learning and Evaluation
Maurice Jansen A Non-Linear Lower Bound for Syntactically Multilinear
Algebraic Branching Programs
Sanjay Jain, Frank Stephan and Nan Ye Prescribed Learning of Indexed
Families
Gabriel Istrate, Madhav Marathe and S. S. Ravi Adversarial Scheduling
Analysis of Game-Theoretic Models of Norm Diffusion
Bernhard Irrgang and Benjamin Seyfferth Multitape Ordinal Machines
and Primitive Recursion
Yoon-Hee Hwang, Sung-Jin Cho, Un-Sook Choi and Han-Doo Kim
Modelling Linear Cellular Automata with the minimum stage corresponding
to CCSG based on LFSR
Yoshihiro Horihata and Keita Yokoyama Singularities of Holomorphic
Functions in Subsystems of Second Order Arithmetic
Mircea-Dan Hernest and Paulo Oliva Hybrid Functional Interpretations
LI Hengwu Approximating Degree-Bounded Minimum Spanning Trees of
Directed Acyclic Graphs
Emmanuel Hainry Reachability in linear dynamical systems
Xiaoyang Gu and Jack H. Lutz Effective Dimensions and Relative
Frequencies
Rica Gonen On the Hardness of Truthful Online Auctions with
Multidimensional Constraints
Walid Gomaa Expressibility of Divisibility inside Σ_1^1
Christian Glaßer, Christian Reitwießner and Victor Selivanov The

Page 10 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Shrinking Property for NP and coNP
Alexander Gavryushkin Computable Models Spectras of Ehrenfeucht
Theories
Christine Gaßner Computation over Groups
André Luiz Galdino and Mauricio Ayala-Rincon Verification of Newman's
and Yokouchi's Lemmas in PVS
willem fouche Subrecursive complexity of identifying the Ramsey
structure of posets
Ekaterina Fokina Algorithmic Properties of Structures for Languages with
Two Unary Functional Symbols
Pantelis Eleftheriou, Costas Koutras and Christos Nomikos Notions of
Bisimulation for Heyting-Valued Modal Languages
Jérôme Durand-Lose Abstract geometrical computation: beyond the
Blum, Shub and Smale model with accumulation
Jacques Duparc and Alessandro Facchini Describing the Wadge
Hierarchy for the Alternation Free Fragment of μ-Calculus (I): The
Levels Below ω_{1}
Giovanni Di Crescenzo and Helger Lipmaa Succinct NP Proofs from an
Extractable-Algorithm Assumption
Michiel De Smet and Andreas Weiermann Phase transitions for weakly
increasing sequences, the Erdös-Szekeres theorem and the Dilworth
theorem
Liesbeth De Mol and Maarten Bullynck A week-end off. The first
extensive number-theoretical computation on the ENIAC.
Gregorio de Miguel Casado, Juan Manuel García-Chamizo and Higinio
Mora Mora Online-division with Periodic Rational Numbers
Barbara Csima, Jiamou Liu and Bakhadyr Khoussainov Computable
Categoricity of Graphs with Finite Components
Antonio Carlos Costa and Graçaliz Dimuro Introducing Service Schemes
and Systems Organization in the Theory of Interactive Computation
Charalampos Cornaros Pell equations and weak regularity priciples
Sung-Jin Cho, Un-Sook Choi, Han-Doo Kim, Yoon-Hee Hwang and Jin-
Gyoung Kim Phase shifts of LFSM as pseudorandom number generators
for BIST for VLSI
Luca Chiarabini Extraction of Efficient Programs from Correct Proofs:
The Case of Structural Induction over Natural Numbers
William Calhoun Triviality and Minimality in the Degrees of Monotone
Complexity
Jérémie Cabessa and Jacques Duparc The Algebraic Counterpart of the
Wagner Hierarchy
Amir Ben-Amram, Lars Kristiansen and Neil Jones Linear, Polynomial or
Exponential? Complexity Inference in Polynomial Time
Edwin Beggs and Annelies Gerber Algorithms for Analytic Functions and
Applications to Toeplitz Operators
Mathias Barra Pure iteration and periodicity
George Metcalfe and Matthias Baaz Herbrand Theorems and
Skolemization for Prenex Fuzzy Logics
Tiago Azevedo, Mario Benevides, Fabio Protti and Marcelo Sihman On
detecting deadlock in the Pi-Calculus
Argimiro Arratia and Iain Stewart Program schemes with deep pushdown
storage

Page 11 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Kostyantyn Archangelsky A new conception of the Euclidian algorithm
for the determination of the least common multiple of formal power series
Luis Antunes and André Souto Sophisticated Infinite Sequences
Bogdan Aman and Gabriel Ciobanu Decidability Results for Mobile
Membranes derived from Mobile Ambients
Marco Almeida, Nelma Moreira and Rogério Reis On the performance of
automata minimization algorithms

European Symposium on Programming

Budapest, Hungary, March 29-April 6, 2008

http://esop2008.doc.ic.ac.uk/

Accepted Papers

 A Sound Semantics for OCaml$_{light}$
Scott Owens
 Parametric polymorphism through run-time sealing, or Theorems for low,
low prices!
Jacob Matthews and Amal Ahmed
 Regular Expression Subtyping for XML Query and Update Languages
James Cheney
 A Theory of Hygienic Macros
David Herman and Mitchell Wand
 A Hybrid Denotational Semantics for Hybrid Systems
Olivier Bouissou and Matthieu Martel
 Full Abstraction for Linda
Cinzia Di Giusto and Maurizio Gabbrielli
 Practical Programming with Higher-Order Encodings and Dependent
Types
Adam Poswolsky and Carsten Schürmann
 Programming in JoCaml
Louis Mandel and Luc Maranget
 Playing with Toy: Constraints and Domain Cooperation
Sonia Estévez, Antonio J. Fernández and Fernando Saenz-Perez
 Typing safe deallocation
Gerard Boudol
 Iterative Specialisation of Horn Clauses
Christoffer Rosenkilde Nielsen, Flemming Nielson and Hanne Riis Nielson
 Ranking Abstractions
Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv and
Hongseok Yang
 Non-disjunctive Numerical Domain for Array Predicate Abstraction
Xavier Allamigeon
 Upper Adjoints for Fast Inter-procedural Variable Equalities
Markus Müller-Olm and Helmut Seidl

Page 12 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

 Cover Algorithms and their Combination
Sumit Gulwani and Madanlal Musuvathi
 Trust and Authorization via Provenance and Integrity in Distributed
Objects
Andrew Cirillo, Radha Jagadeesan, Corin Pitcher and James Riely
 Linear Declassification
Yuta Kaneko and Naoki Kobayashi
 Just Forget It - The Semantics of Enforcement of Information Erasure
Sebastian Hunt and David Sands
 Open Bisimulation for the Concurrent Constraint Pi-Calculus
Maria Grazia Buscemi and Ugo Montanari
 The Conversation Calculus: A Model of Service Oriented Computation
Hugo Vieira, Luis Caires and Joao Seco
 Inferring Channel Buffer Bounds via Linear Programming
Tachio Terauchi and Adam Megacz
 Verification of Equivalent-Results Methods
Rustan Leino and Peter Müller
 Semi-Persistent Data Structures
Sylvain Conchon and Jean-Christophe Filliatre
 A Realizability Model for Impredicative Hoare Type Theory
Rasmus L. Petersen, Lars Birkedal, Aleksandar Nanevski and Greg
Morrisett
 Oracle Semantics for Concurrent Separation Logic
Aquinas Hobor, Andrew Appel and Francesco Zappa Nardelli
 Certificate~Translation in Abstract Interpretation
Gilles Barthe and César Kunz
 A formal implementation of value commitment
Cédric Fournet, Nataliya Guts and Francesco Zappa Nardelli

 Copyright or other proprietary statement goes here.
For problems or questions regarding this Web site contact [ProjectEmail].

Last updated: 07/25/07.

Page 13 of 13Call for papers relevant to the field of logic programming

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Accepted/Conferences/c...

Net Talk
edited by Roberto Bagnara

Content:

Advice from a newbie

Advice from a newbie
From: anyway <b@rt.luna.be>

Dear comp.lang.prolog,

Sorry this is long, but I really have important things to show ...

I recently got my hands on Prolog. I really think I got the hang of it: I
can do anything I used to do in my (other) most favourite languages,
and often the Prolog version is even more concise, although
probably somewhat obscure to the non-informed. And to my surprise
(well, actually not really :-), I have come up with versions of common
predicates that apparently nobody conceived of before: here is my
version of the reverse predicate - I named it rev/2 because it could
otherwise clash with something in the library:

rev(List,_) :-
 member(X,List),
 asserta(was_in_list(X)),
 fail.
rev(_,RevList) :-
 findall(X,retract(was_in_list
(X)),RevList).

I am extremely proud of the combination of using an aggregate
predicate and a database predicate in the last clause. But see later
for some damper on my hapiness.

I also have a brand new version of append - named app/3 for the
same reason:

app(L1,L2,_) :-
 assert(result(L2)),
 member(X,L1), asserta(was_in_list(X)),
 fail.

Page 1 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

app(_,_,_) :-
 retract(was_in_list(X)),
 retract(result(PartialRes)),
 assert(result([X|PartialRes])),
 fail.
app(_,_,L3) :-
 retract(result(L3)).

I know it uses one more clause than the usual definition, but to be
frank, I think my version is much easier to understand: for one thing,
it avoids recursion (showing it is really unnecessary) and have you
noticed how I cunningly exploit the logical update view of dynamic
predicates in the second clause ? It is great that all things fit together
so nicely.

I actually like my version of append better than my version of
reverse, because I am inclined to the following implementation
schema (call it a design pattern if you want):

 one (or more) clause puts the data in the database [where it
 belongs naturally]
 one (or more) clause does the actual work - all in the database
 of course
 one clause picks up the result from the database

app/3 does this beautifully - rev/2 probably needs some work to
achieve this ideal.

As you can tell, I am very taken in by Prolog, but I do have some
quibbles with Prolog as a language, its implementors and its
designers.

1) maybe you find my expercience too limited, but my versions of rev
and app show clearly that the sequence

 member(X,L), asserta(foo(X))

is very useful: it is worth lifting this to the status of a design pattern
and have it abbreviated to something like

 FORALL X IN L ASSERT foo(X)

What do people think about this ? [I am transferring stuff from my
other favourite languages - in particular COBOL - to Prolog here, but
this will help wider acceptance of Prolog, I am sure]

2) let's focus on my definition of rev for now (the app version has the

Page 2 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

same issue): it works fine for lists of atoms, or integers, mixed
(atoms and integers) lists and even lists whose elements are any
term without variables (some textbooks name these terms ground,
like coffee :-); but when I reverse a list with terms with variables, then
these variables become disconnected; here is an example:

 ?- rev([X],[Y]), X == Y.
 No

I have checkd this result in SWI, GNU, XSB, CIAO, ECLIPSE,
SICStus and B-Prolog: always the same No. I then checked the ISO
Prolog standard and it seems that this is indeed what is required:
assert/retract disconnect variables ! While this might help a logical
reading of those builtins, I much prefer a version of assert/retract that
would keep the connection of variables, so that my rev/2 (and app/3)
work as intended

3) let's now focus on my app/3: somehow every Prolog
implementation I tried got the complexity of my predicate wrong; my
code is cleary O(n) with n the length of the first argument; but I have
noticed that Prolog systems make it into O(n*n) in practice; that's no
good; no wonder Prolog is hardly used - please Prolog
implementors, do a favour to your language and get this right !

4) both my rev/2 and app/3 exhibit an even stranger thing: they are
also linear in the size of the ELEMENTS of the involved lists;
everyone with half a brain just knows that append and reverse are by
nature independent of the size of the list elements - so why are
Prolog implementations getting this one wrong as well ? why is it too
difficult to get polymorphic types right for you ?

5) the following is really a bummer: I expect a predicate to be
callable at all times, even in the middle of some other complicated
code; what I mean is this - illustrating it on app/3 and rev/2: I will call
rev([1,2,3],RevL) in the middle of a call to app/3 by the following
code for append

app(L1,L2,_) :-
 assert(result(L2)),
 member(X,L1), asserta(was_in_list(X)),
 fail.
app(_,_,_) :-
 rev([1,2,3],RevL), write(RevL), nl,
 retract(was_in_list(X)),
 retract(result(PartialRes)),
 assert(result([X|PartialRes])),

Page 3 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

 fail.
app(_,_,L3) :-
 retract(result(L3)).

Now imagine the following call and answer (in SWI - but again
consistent in other Prolog systems):

 ?- app([a,b,c],[d,e],L).
 [3, 2, 1, c, b, a]

 L = [d, e]

Hard to believe, but there you go ! Apparently, the added call to rev/2
operates in the same dynamic predicate space as the toplevel call to
app/3. For me this almost blew it. Luckily the fix is easy: Prolog
should encapsulate its asserts/retracts in a dynamicaly scoped way.
Shouldn't be too difficult for Prolog implementors to accomodate for
such a nice principle, I'd say.

6) The following made me really laugh: none of the predicates I
wrote (including rev/2 and app/3) work backwards, i.e. ?- app(X,Y,
[1,2]). does not split [1,2] in all possible pairs of lists making up [1,2].
Still, all Prolog textbooks cannot stop talking about this feature.

It seems that all this fuzz about bidirectional programming in Prolog
is just a myth. No big deal for me: I will not miss it. But why such bad
marketing ?

Before I go, I want to share with you my version of merge/3 (named
merg/2):

merg(L1,_,_) :- member(X,L1), assertz(list1(X)),
fail.
merg(_,L2,_) :- member(X,L2), assertz(list2(X)),
fail.
merg(_,_,_) :-
 retract(list1(X)),
 assertz(result(X)),
 (retract(list2(Y)) ->
 assertz(result(Y))
 ;
 true
),
 fail.
merg(_,_,_) :-
 retract(list2(X)),

Page 4 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

From: Chip Eastham
Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
> Dear comp.lang.prolog,
>
> Sorry this is long, but I really have important things to
show ...
>
> I recently got my hands on Prolog.

Welcome to the fray!

> rev(List,_) :-
> member(X,List),
> asserta(was_in_list(X)),
> fail.

 assertz(result(X)),
 fail.
merg(_,_,L3) :-
 findall(X,retract(result(X)),L3).

My design patterns work fantastic (apart from the problems reported
above), don't you think ?

I do have some more advice for the Prolog community, in particular
about the cut (!/0) whose scope I find rather limited, but maybe more
about that later: this was enough for one day's work. I am off now, to
refactor some more predicates. On my todo list are the inverse of
merg/3, and I would really like a version of member/2 which does not
come from the library. I have seen the library version of member/2
and it is extremely recursive: it is both left and right recursive.
Probably Prolog programmers don't even know this, or else they
would avoid it as the plague: how can you be sure it works
correctly ? It must be based on an weird programming paradigm
from the seventies or maybe even the sixties. Anyway, if you feel you
can contribute, please do so in this newsgroup: together we can
improve the world, or at least Prolog !

My blessings,

b@rt.luna.be

Page 5 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> rev(_,RevList) :-
> findall(X,retract(was_in_list(X)),RevList).
>
> I am extremely proud of the combination of using an
aggregate
> predicate and a database predicate in the last clause.
But see later
> for some damper on my hapiness.

[snip]

Based on the following comments in your post, you seem to mistrust recursion
and feel that Prolog would be better off without it. I don't think I've encountered
this point of view before...

As you experimented, you found that asserting dynamic facts does not preserve
the semantics of variable identification in the same way as their unification in rule
chaining. That's a keen observation on your part, and I look forward to seeing if
your opinion of recursion (and polymorphism??) improves with practice.

> I do have some more advice for the Prolog community, in
particular
> about the cut (!/0) whose scope I find rather limited,
but maybe more
> about that later: this was enough for one day's work. I
am off now, to
> refactor some more predicates. On my todo list are the
inverse of
> merg/3, and I would really like a version of member/2
which does not
> come from the library. I have seen the library version of
member/2 and
> it is extremely recursive: it is both left and right
> recursive. Probably Prolog programmers don't even know
this, or else
> they would avoid it as the plague: how can you be sure it
works
> correctly ? It must be based on an weird programming
paradigm from
> the seventies or maybe even the sixties.

[snip]

There are generalizations to the cut construction in various implementation
dependent ways. One keyword to search on is "getBackTrack" (resp.
cutBackTrack), which are useful in implementing Prolog within Prolog, among
other things.

I'm not sure what you mean by saying the standard version of member/2 is "both
left and right recursive." Here:

Page 6 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

member(H,[H|_]).
member(X,[_|T]) :- member(X,T).

This is "tail recursive" in the sense that when the outer instance of the member/2
goal invokes the inner instance, it's the final subgoal and there are no "open"
backtrack points to consider. So it can be implemented by the Prolog engine in
an efficient manner. What's not to like?
.

From: anyway <b@rt.luna.be>
Subject: Advice from a newbie

Chip Eastham wrote:
> Based on the following comments in your post, you
> seem to mistrust recursion and feel that Prolog
> would be better off without it. I don't think
> I've encountered this point of view before...

Are you condescending on purpose, or do you have no clue what I mean ?

> As you experimented, you found that asserting
> dynamic facts does not preserve the semantics
> of variable identification in the same way as
> their unification in rule chaining. That's a
> keen observation on your part, and I look
> forward to seeing if your opinion of recursion
> (and polymorphism??) improves with practice.

Same question. Or maybe you are just pulling my leg.

> There are generalizations to the cut construction
> in various implementation dependent ways. One keyword
> to search on is "getBackTrack" (resp. cutBackTrack),
> which are useful in implementing Prolog within
> Prolog, among other things.

Those are quite unimaginative and known in various implementations, e.g., in
XSB they are named '_$savecp'/1 and '_$cutto'/1, and I could imagine that any
Prolog implementation must have those, even if they are not in the manual. I was
thinking about something more far reaching than that.

> I'm not sure what you mean by saying the standard version
> of member/2 is "both left and right recursive." Here:
>
> member(H,[H|_]).
> member(X,[_|T]) :- member(X,T).
>

Page 7 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> This is "tail recursive" in the sense that when
> the outer instance of the member/2 goal invokes
> the inner instance, it's the final subgoal and
> there are no "open" backtrack points to consider.
> So it can be implemented by the Prolog engine in
> an efficient manner. What's not to like?

It seems you do not know what I mean by left- and right-recursive. Maybe I
should rephrase that to head- and tail-recursive. What is an "open" backtrack
point ? Do there exist "closed" backtrack points as well then ? You seem to be an
expert in Prolog implementation: what can the Prolog engine (PE ?) do so
efficiently for tail-recursive calls it cannot do for others ? I also find the
terminology "inner and outer instance of a goal" quite strange: no Prolog
textbook I have read mentions it.

Now all the above is just chit-chat: can we focus on the real contribution of my
original post ? The database stuff, the design patterns, the language design
advice ? Please, I do not want to stall !

From: Chip Eastham

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>> Based on the following comments in your post, you
>> seem to mistrust recursion and feel that Prolog
>> would be better off without it. I don't think
>> I've encountered this point of view before...
>
> Are you condescending on purpose, or do you have no clue
what I mean ?

If I'd written what you wrote, this is how I'd want someone to respond to me. I
tried to respectfully and accurately restate the main point, as it seems to me, of
your post. Possibly I failed in this, but the point is to alert you quickly to potential
misunderstanding. As I said, I don't recall any previous opinion that Prolog's
reliance on recursion was a weakness to be overcome. If I mistook your point
(aka "have no clue"), please enlighten me.

>> As you experimented, you found that asserting
>> dynamic facts does not preserve the semantics
>> of variable identification in the same way as
>> their unification in rule chaining. That's a
>> keen observation on your part, and I look
>> forward to seeing if your opinion of recursion
>> (and polymorphism??) improves with practice.
>
> Same question. Or maybe you are just pulling my leg.

Page 8 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

I'm not pulling your leg. It seems to me you were quite diligent to discover by
testing (using varied versions) that your implementation of reverse doesn't
preserve the ordinary semantics of unification.

To me your implementation is "swatting a fly with a sledgehammer". Its
dependence on non-local state could be improved by retracting all was_in_list/1
facts at the outset, either in addition to or in preference to the retraction at the
end.

Here's the usual Prolog implementation of reverse/2 by "embedding" it in an
auxiliary version reverse/3:

reverse(A,Z) :- reverse(A,[],Z).

reverse([],Z,Z).
reverse([H|T],X,Z) :- reverse(T,[H|X],Z).

This seems to me a more self-contained implementation. Of course if yours could
be shown to have a better performance, then I'd be happy to grant that point.

>> There are generalizations to the cut construction
>> in various implementation dependent ways. One keyword
>> to search on is "getBackTrack" (resp. cutBackTrack),
>> which are useful in implementing Prolog within
>> Prolog, among other things.
>
> Those are quite unimaginative and known in various
implementations, e.g.,
> in XSB they are named '_$savecp'/1 and '_$cutto'/1, and I
could imagine
> that any Prolog implementation must have those, even if
they are not in
> the manual. I was thinking about something more far
reaching than that.
>
>> I'm not sure what you mean by saying the standard
version
>> of member/2 is "both left and right recursive." Here:
>
>> member(H,[H|_]).
>> member(X,[_|T]) :- member(X,T).
>
>> This is "tail recursive" in the sense that when
>> the outer instance of the member/2 goal invokes
>> the inner instance, it's the final subgoal and
>> there are no "open" backtrack points to consider.
>> So it can be implemented by the Prolog engine in
>> an efficient manner. What's not to like?
>

Page 9 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> It seems you do not know what I mean by left- and right-
recursive.
> Maybe I should rephrase that to head- and tail-recursive.

I don't know what head-recursive should mean. In the present application, the
clause which directly relates to head H does not involve recursion (a predicate
that calls itself).

> What is an "open" backtrack point ?
> Do there exist "closed" backtrack points as well then ?

By backtrack point I mean a goal or subgoal for which there are alternative ways
of succeeding/satisfaction.

One may certainly have a case in which all but one of the possibilities have been
tried and failed, so that only one possibility of success remains. In this way what
once may have been an "open" backtrack point (ie. multiple alternatives to
explore) can convert into a "closed" backtrack point. I don't insist on this
terminology, though the distinction in states is certainly important enough to
deserve a definition. Choice point is another phrase denoting places in the rule
chaining where alternatives still exist. Deterministic is a word used to describe
predicates that succeed in at most one way, while nondeterministic denotes
predicates which might provide more than one solution.

> You seem to be an expert in Prolog implementation: what
can the
> Prolog engine (PE ?) do so efficiently for tail-recursive
calls it cannot
> do for others ?

Loosely speaking there is an optimization for such tail-recursive predicates as
I've described that allows the implementation by recursion to be reduced to an
implementation by iteration/looping. This saves stack space, which can be critical
if the recursion goes deep, and can boost the speed of computation.

> I also find the terminology "inner and outer instance of
a
> goal" quite strange: no Prolog textbook I have read
mentions it.

It fairly common across many languages to refer to the scope of variables in a
calling function/predicate as "outer" and to the scope in a called
function/predicate as "inner". For recursion we have, at least indirectly, a
function/predicate that calls (invokes) itself. Feel free to suggest a better
vocabulary for drawing this distinction if inner/outer lacks clarity.

> Now all the above is just chit-chat: can we focus on the
real
> contribution of my original post ? The database stuff,
the design

Page 10 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> patterns, the language design advice ? Please, I do not
want to stall !

best wishes, chip

From: A.L.

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>Dear comp.lang.prolog,
>
>Sorry this is long, but I really have important things to
show ...
>
>I recently got my hands on Prolog. I really think I got
the hang of
>it: I can do anything I used to do in my (other) most
favourite
>languages, and often the Prolog version is even more
concise, although
>probably somewhat obscure to the non-informed. And to my
surprise
>(well, actually not really :-), I have come up with
versions of common
>predicates that apparently nobody conceived of before:
here is my
>version of the reverse predicate - I named it rev/2
because it could
>otherwise clash with something in the library:
>
>rev(List,_) :-
> member(X,List),
> asserta(was_in_list(X)),
> fail.
>rev(_,RevList) :-
> findall(X,retract(was_in_list(X)),RevList).

Few threads above (thread name "append problem") there was discussion
regarding assert/retract. Although I don't agree with all opinions expressed there,
the following statement issued by Matthew Huntbach seems to be written directly
for you.

Quote:
"If you have to use asssert/retract to simulate mutable variables, it indicates you
really haven't started thinking in Prolog. I only occasionally glance at this

Page 11 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

newsgroup, but over the years, many times, I've seen Prolog newbies here
struggling and jumping to using assert/retract where there are much more
elegant ways of doing what they want to do which don't use them.

Pure logic and functional languages just don't use mutable variables. In Prolog,
assert/retract are rather ugly things mainly used to get round the fact that
otherwise no information is saved over backtracking. There are specialist cases
where the self-modifying code they provide is useful - but this is not something
newbies should be concerned with, and it has no place in an introductory tutorial.

Matthew Huntbach"

From: A.L.

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>I do have some more advice for the Prolog community, in
particular
>about the cut (!/0) whose scope I find rather limited, but
maybe more
>about that later: this was enough for one day's work. I am
off now, to
>refactor some more predicates. On my todo list are the
inverse of
>merg/3, and I would really like a version of member/2
which does not
>come from the library. I have seen the library version of
member/2 and
>it is extremely recursive: it is both left and right
>recursive. Probably Prolog programmers don't even know
this, or else
>they would avoid it as the plague: how can you be sure it
works
>correctly ? It must be based on an weird programming
paradigm from
>the seventies or maybe even the sixties. Anyway, if you
feel you can
>contribute, please do so in this newsgroup: together we
can improve the
>world, or at least Prolog !

Good jokes! With good advices wait unil you get rid of "newbie" status.

See you 5 years from now.

Page 12 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

From: anyway <b@rt.luna.be>
Subject: Advice from a newbie

A.L wrote:
> Good jokes! With good advices wait unil you get rid of
"newbie"
> status.
>
> See you 5 years from now.

It seems that the established Prolog masters are not happy with what I wrote and
propose. Maybe they could first tell me: have they ever seen versions of append,
reverse or merge that ressemble even remotely what I wrote ? If not, can they
judge them on their merit instead of on my newbie status ? Probably too much to
ask. Anyway, here comes my proposal for a new cut device.

There are basically two ways to cut alternatives in Prolog: once/1 and the cut
(!/0) [I will treat if-then-else at some later occasion perhaps - needless to say,
there is something wrong there as well].

Both are limited in their scope: once(G) only cuts alternatives in G, and the cut
only EVERYTHING to the left. Lee Naish - a very enlightend person indeed -
once proposed a cutting predicate (whose name I forgot) that would only take
away the alteratives of the head: it didn't make it into ISO (probably too far ahead
of its time). The predicates that implementations hide for users - like '_$savecp'/1
and '_$cutto'/1 in XSB - are also quite limited: the scope is from the save up to
the cutto.

Here is what I want (actually badly need almost anytime I write a larger piece of
Prolog - something I am now doing on a regular basis). I am illustrating it with an
example, but I am using variables only where they matter for showing my point:

 p :- identify_goal(q,Id), r, foo(Id).

 foo(Id) :- s , cut_goal(Id),

Two new builtin constructs are used: identify_scope/2 executes its first argument
(like call/1), and on success unifies its second argument with an identifier of the
goal. cut_goal/1 cuts all choices left by the execution of the goal identified by its
argument.

Note that the identifier can be passed around as any other Prolog object.

Note that the choices for the intermediate goals (r,foo,s) are not affected.

It should be clear that those two builtins can be used to implement once/1, the
cut, Lee Naish's head cut, the if-then-else and even the if/3 (as in SICStus
Prolog) - but the latter needs some inventivity (anyone wants to try it ?).

Page 13 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

If you would like to comment on these two new builtins, please do so, whether on
their usefulness, their operational semantics, how difficult it would be to
implement them.

With some hesitation - because I am not absolutely sure that this is useful, but at
least it is thinkable - I am also showing you another quite innovative related
predicate: uncut_goal/1. Again an example:

 p :- identify_goal(q,Id), r, !, foo(Id).

 foo(Id) :- s , uncut_goal(Id),

Note the differences: there is a cut after r, and foo/1 uses uncut_goal. The idea is
simple and intuitive: the cut has removed the choices from q. Uncut_goal RE-
INSTALLES these cut away choices !

I think this might turn out very powerfull as a programming aid: local decisions to
cut away choices, can be undone elsewhere. This shows a similarity with
undoing bindings to variables on backtracking, and I must admit, I haven't
worked out the analogy, but I anticipate a duality here that might be best
expressed in terms of categories. If someone feels up to it: please go ahead.

From: A.L.

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>It seems that the established Prolog masters are not happy
with what I
>wrote and propose.

No.

>Maybe they could first tell me: have they ever seen
>versions of append, reverse or merge that ressemble even
remotely what
>I wrote ?

Fortunately, no.

> If not, can they judge them on their merit instead of on
my
>newbie status ? Probably too much to ask. Anyway, here
comes my
>proposal for a new cut device.
>

Study, study, study! There will be never enough.

Page 14 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

From: Matthew Huntbach

Subject: Advice from a newbie

A.L. wrote:
> Few threads above (thread name "append problem") there
was
> discussion regarding assert/retract. Although I don't
agree with all
> opinions expressed there, the following statement issued
by Matthew
> Huntbach seems to be written directly for you.
>
> Quote:
>
> "If you have to use asssert/retract to simulate mutable
variables,
> it indicates you really haven't started thinking in
Prolog. I only
> occasionally glance at this newsgroup, but over the
years, many
> times, I've seen Prolog newbies here struggling and
jumping to using
> assert/retract where there are much more elegant ways of
doing what
> they want to do which don't use them.
>
> Pure logic and functional languages just don't use
mutable
> variables. In Prolog, assert/retract are rather ugly
things mainly
> used to get round the fact that otherwise no information
is saved
> over backtracking. There are specialist cases where the
> self-modifying code they provide is useful - but this is
not
> something newbies should be concerned with, and it has no
place in
> an introductory tutorial.

Indeed, I think this poster well illustrates my point.

The solution proposed uses the clause database as a mutable list, and
implements loops over it using fail and findall. Well, yes, you *can* do this, but
the point is why? The only reason given by this poster is to avoid recursion.
Again, why? There are very simple and obvious ways of solving this problem

Page 15 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

using recursion, there is no need to go to the complexity and inefficiency of
changing the clause database and simulating loops using fail and findall to solve
it.

So it looks to me as if this person, rather than embracing the clear declarative
way of solving problems, has instead used the crutch of assert/retract to solve it
in a way that is still thinking in terms of loops over mutable variables. This person
needs to be taught to get over his or her fear of recursion and to be able to use it
as a natural tool in the programmer's toolkit. The whole point of logic
programming is that one can state a solution in terms of simple relationships, but
that does often involve recursion. If one isn't doing that, then one is using Prolog,
but not doing logic programming. In that case, why use Prolog?

From: Jan Wielemaker

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
> Here is what I want (actually badly need almost anytime I
write a
> larger piece of Prolog - something I am now doing on a
regular basis).

Its a bit odd that you appear to be one of the few that needs this :-) Otherwise, it
looks most like goto *var of gcc. Something that allows you to write very
unreadable code.

> I am illustrating it with an example, but I am using
variables only
> where they matter for showing my point:
>
> p :- identify_goal(q,Id), r, foo(Id).
>
> foo(Id) :- s , cut_goal(Id),

> With some hesitation - because I am not absolutely sure
that this is
> useful, but at least it is thinkable - I am also showing
you another
> quite innovative related predicate: uncut_goal/1. Again
an example:
>
> p :- identify_goal(q,Id), r, !, foo(Id).
>
> foo(Id) :- s , uncut_goal(Id),

You'll definitely make friends with the memory vendors. One of the big reasons
for having choicepoint pruning is to allow the system to remove a lot of junk. If it

Page 16 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

needs to be able to get this junk back from the wastebin it no longer can do this.

> My blessings,
>
> b@rt.luna.be

Luna.be? ... :-)

From: Pinapple

Subject: Advice from a newbie

Matthew Huntbach wrote:
> There are very simple and obvious
> ways of solving this problem using recursion...

I don't really disagree with the "general gist" of what you have to say here, or
elsewhere, and your points are well-taken. But to nitpick a small thing, I have
noticed you use the phrases "simple" and "obvious" several times (in previous
posts) to describe a potential way to solve a problem (your way), vs. another way
(the "newbie way," or "unprolog way"). I think it should occur to you that if it were
as "simple" and "obvious" as you say it is, all these newbies would be doing it
your way, don't you think? The point simply is, "simple" and "obvious" are
OBVIOUSLY relative terms, and you shouldn't use them as if they aren't. You
remind me of Kasparov wondering why the chess novice can't see the "simple"
and "obvious" mate in 15 that he so easily sees. His ability to see it is what
makes him an expert. Your ability to see these Prolog things is what makes you
(and Demoen and Triska and Wielemaker, etc.) an expert.

It must also be said that Prolog in many cases forces one to do extreme backflips
in order to do something truly simple and obvious, that would take one line of
code in a more traditional language. Reminds me of programming in a stack
language and being forced to do all manners of pops, dups, rolls, dips, etc. just
to get access to the value I need to manipulate (and then I have to do it all over
again for the next value to manipulate). The stack experts say "What's the
problem? The simple and obvious solution here is a 3-point roll-reverse-dup-dip-
swap maneuver, combined with a monadic pick-rotate- pop!" And I'm like "Uh...
in another lanugage I could simply write x=x +1."

From: Matthew Huntbach

Subject: Advice from a newbie

pineapple wrote:
> Matthew Huntbach wrote:
>> There are very simple and obvious
>> ways of solving this problem using recursion...
>

Page 17 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> I don't really disagree with the "general gist" of what
you have to
> say here, or elsewhere, and your points are well-taken.
But to
> nitpick a small thing, I have noticed you use the phrases
"simple" and
> "obvious" several times (in previous posts) to describe a
potential
> way to solve a problem (your way), vs. another way (the
"newbie way,"
> or "unprolog way"). I think it should occur to you that
if it were as
> "simple" and "obvious" as you say it is, all these
newbies would be
> doing it your way, don't you think? The point simply is,
"simple" and
> "obvious" are *OBVIOUSLY* relative terms, and you
shouldn't use them
> as if they aren't. You remind me of Kasparov wondering
why the chess
> novice can't see the "simple" and "obvious" mate in 15
that he so
> easily sees. His ability to see it is what makes him an
expert. Your
> ability to see these Prolog things is what makes you (and
Demoen and
> Triska and Wielemaker, etc.) an expert.

I don't think the very basic use of recursion which is required to write reverse or
append in Prolog is equivalent to looking 15 moves ahead in chess. To me,
doing it this way is both simple and obvious because it uses only the most basic
core aspect of Prolog, it can be written in a few lines, and ONCE ONE HAS GOT
USED TO IT is so intuitive that one hardly has to think about it.

The words in capitals are the key. I appreciate that, for some reason, these
techniques require a bit of getting used to. For some reason, many newbies find
recursion hard to use, and will go to great lengths using complex side-aspects of
the language, to avoid it. I am not fully sure why that is, perhaps you and the
orignator of the thread can say why.

Let us consider appending two lists, as one of the examples considered, just
about the most basic piece of recursion you can get in Prolog.

To append two lists, if the first is empty the result is the same as the second.

Otherwise, to append two lists, if you append everything except the first item of
the first list to the second, then append the first item of the first list to the result,
you get the append of the two lists.

This is English, not Prolog, but it translates almost directly to the two Prolog

Page 18 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

clauses of standard append. Now, you and the originator of this thread clearly do
regard this as complex, to the point of likening it to a chess grandmaster looking
15 moves ahead and seeking instead to use far more complex programs which
involve self-modifying code. Why?

From: A.L.

Subject: Advice from a newbie

pineapple wrote:
>> There are very simple and obvious
>> ways of solving this problem using recursion...
>
> I don't really disagree with the "general gist" of what
you have to
> say here, or elsewhere, and your points are well-taken.
But to
> nitpick a small thing, I have noticed you use the phrases
"simple" and
> "obvious" several times (in previous posts) to describe a
potential
> way to solve a problem (your way), vs. another way (the
"newbie way,"
> or "unprolog way"). I think it should occur to you that
if it were as
> "simple" and "obvious" as you say it is, all these
newbies would be
> doing it your way, don't you think? The point simply is,
"simple" and
> "obvious" are *OBVIOUSLY* relative terms, and you
shouldn't use them
> as if they aren't.

"I don't understand Relativity Theory and I don't know Relativity Theory. But I am
sure that Einstein was wrong. Therefore, I present my own Theory of Everything,
only 1 page long"..

Quote from sci.physics.

From: Jan Wielemaker

Subject: Advice from a newbie

Matthew Huntbach wrote:
> To append two lists, if the first is empty the result is
the same as the
> second.
>

Page 19 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> Otherwise, to append two lists, if you append everything
except the first
> item of the first list to the second, then append the
first item of the
> first list to the result, you get the append of the two
lists.
>
> This is English, not Prolog, but it translates almost
directly to the two

But there are many more ways to describe append that do not translate that well
into Prolog. What about

 To append two lists, create a new list, put all elements of the
 first into the new list, then put all elements of the second
 into the new list.

English that translates into Prolog is English that does not use some notion of an
imperative variable and splits list into the head (an element) and tail (a list). With
different but similar subsets of the English language you can describe any
program in any language in English.

I'm convinced the tradional Prolog way of defining predicates that transform
datastructures is, once mastered, a powerful mechanism that is less prone to
errors than imperative alternatives. I doubt it is more natural to the average
person (whatever that may mean).

From: Matthew Huntbach

Subject: Advice from a newbie

I'm not saying it is more natural. It's simple, in that it can be written down very
concisely in English and that translates directly to Prolog, and it's obvious ONCE
YOU GET USED TO THINKING THAT WAY. I think it plain, however, from the
way that many newbies struggle with it, that there is a conceptual barrier which
many people find difficult to cross. That is why I think, when learning Prolog, it is
important to do plenty of exercises in the basic recursion and backtracking way
to ensure thorough familiarity with that, rather than be given the crutch of
assert/retract which enables people to escape into an imperative world. If you'd
rather be programming in an imperative way, then why use Prolog in the first
place?

This issue goes right back to the origins of Prolog, when it was genuinely felt that
it was so simple and natural that using it would make programming so much
easier. When this seemed not to be the case, the first Prolog people wondered if
the problem was that somehow their students' brains had been damaged by
doing imperative programming first, and thought that maybe if they were taught

Page 20 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Prolog first they would naturally think that way. But even there, it does seem that
somehow there are a small number of people who find recursion simple and
natural, and a large number who don't. I'm still optimistic enough to think the
barrier can be jumped with practice, rather than to accept that most of humanity
just can't and never will grasp it. But if that really is the case, we might as well
give up on Prolog.

From: Jan Wielemaker

Subject:Advice from a newbie

Matthew Huntbach wrote:
> a conceptual barrier which many people find difficult to
cross. That is
> why I think, when learning Prolog, it is important to do
plenty of
> exercises in the basic recursion and backtracking way to
ensure thorough
> familiarity with that, rather than be given the crutch of
assert/retract
> which enables people to escape into an imperative world.
If you'd rather
> be programming in an imperative way, then why use Prolog
in the first
> place?

Very few people will oppose this view. The power of Prolog is recursion, logical
variables and backtracking. Any course must teach these and avoid as much as
possible explaining there are ways to to imperative programming in Prolog after
all. Even with all tricks, Prolog is a lousy imperative programming language!

> rather than to accept that most of humanity just can't
and never
> will grasp it.
> But if that really is the case, we might as well give up
on Prolog.

Not so soon. I know enough people that have fun and make a living because
they understand these mechanisms :-) I very much doubt there is any hope
Prolog (or more generally Logic Programming) will reach wide acceptance ever
though. Except for mathematicians, its just not natural enough ...

From: Pinapple

Subject: Advice from a newbie

Page 21 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Matthew Huntbach wrote:
> I don't think the very basic use of recursion which is
required to
> write reverse or append in Prolog is equivalent to
looking 15 moves ahead
> in chess.

I don't either, personally, but that wasn't the point. The point was, "simple" and
"obvious" are obviously relative terms. If they aren't relative, then you seem to
imply that newbies purposefully do the non-simple and non-obvious even though
they see the simple and obvious solution staring them in the face.

From: anyway <b@rt.luna.be>
Subject: Advice from a newbie

A.L wrote:
>> If not, can they judge them on their merit instead of on
my
>> newbie status ? Probably too much to ask. Anyway, here
comes my
>> proposal for a new cut device.
>
> Study, study, study! There will be never enough.

Study is best performed under the guidance of masters. But apparently, the
Prolog masters can only say "study" or "get used to it" - that's even worse than
Zen masters who at least have a deeper message in their otherwise
incomprehensible words - even if that message misses the point as well.

Anyway, I am not yet giving up on you guys !

Why is recursion a bad thing ? Here is the answer: remember the old days when
things were better ? One of those better things was ... the absence of recursion
in languages like Fortran and Cobol. Most new Prolog programmers these days
are not old enough to remember that of course, but the abhorrence from
recursion is deeply grafted in our DNA: it is just plain wrong to define a concept
in terms of itself, this is clear to any person in the street, whether programmer,
matematician, welder or book keeper. The only way to make sense of such self-
defining definitions is to rely on a meta-principle: induction. But induction does
not always apply: you must have a well-founded order to do it on, and you must
check that your recursive definition respects that order. That's why textbooks
give a definition of Ackerman's function and imediately ask you to prove that this
actually defines something. Now, it is clear that proving anything at all, goes way
beyond most programmer's skills. Still, without proofs, all of your recursively
defined predicates may just mean gibberish !

On the other hand, even babies use iteration: cry until you get food. No
nonsense like "I cry and if I do not get food, I will call the same procedure again".

Page 22 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

But the focus of all this is wrong: my proposals for new builtins (or a new
semantics for old ones), my new design patterns for Prolog ... no fundamental
reaction to that. Just something from Mister SWI about memory vendors - I might
react to that in a later contribution.

I am sure of what will happen: the gurus will put me in their kill-file, the other
newbies with great ideas will be put off by the lack of response to novelty in this
news group and the Prolog masters will keep on helping students out with their
homework. I might just move on to another newsgroup: that's not a threath, it is
just a real possibility. But sad for Prolog. And I find the reaction by A.L. (Einstein,
relativity theory ...) all the more inappropriate, because also my PhD supervisor
was convinced that general relativity was too complicated to be correct.

So, please can someone with brains come to the real point ?

From: Pinapple

Subject: Advice from a newbie

Matthew Huntbach wrote:
> Now, you and the originator of this thread
> clearly do regard this as complex, to the point of
likening it to a chess
> grandmaster looking 15 moves ahead and seeking instead to
use far more
> complex programs which involve self-modifying code. Why?

Funny you should ask. The solution you are referring to where I used "self-
modifying code" was actually an attempt to get *TO* the basic Prolog ability of
backtracking (something you say newbies should be drilled on - and I agree). To
me, the other solutions were more exotic and fancy, and required much more
knowledge of Prolog libraries and built-in predicates. I was just trying to stick to
ultra-basics. I know you disagree, and think that what I did was non-obvious and
uber-complex, but I suppose that's what makes opinions what they are -
opinions.

I was simply trying to get to a point where I could do a simple "fact1(X), fact2(Y),
fact3(Z), fail" and have Prolog backtrack and spit out all the solutions. In that, I
was a success, and I call that about as fervent of an attempt to get at the
"basics" as you'll find. Please - criticize my solution all you want. I beg you to.
Just understand that my attempt was actually to try to do "standard, ultra- basic"
Prolog. If I failed in that attempt, I suppose it's better to have tried and failed
than to not have tried at all.

Page 23 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

From: Pinapple

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
> but the abhorrence from recursion is deeply grafted in
our DNA: it is just
> plain wrong to define a concept in terms of itself....

> On the other hand, even babies use iteration:

Huntchback, I think this guy actually has a good point. In peoples' everyday
lives, they don't think recursively, they think iteratively. If some guy on the street
asks me directions to go somewhere, I don't give him a recursive set of
directions. I give him an iterative set of directions. When I work on a car engine,
I don't look at a recursive instruction manual, I look at an iterative manual. For
just about every single problem I can think of in daily life - even mowing my lawn
- I don't think about the problem recursively...

mowlawn_finished([]).
mowlawn-finshed([H|T] :- cutgrass(H), mowlawn_finished(T).

I think about it iteratively (and so does everyone else). I think about it in terms of
doing strips at a time, making quarter turns or 180 degree turns with the mower,
checking to see if there is more grass left to cut, etc. Basically a big while loop
with a bunch of instructions and checks in the middle of it.

Note that I am not putting down recursion, nor the need for a newbie to learn
recursion in Prolog. Nor am I advocating Prolog to (necessarily) get away from
recursion. I am merely answering your previous question by saying I believe this
guy makes a strong point about it "being in the DNA." Nobody walks around
thinking recursively in their daily lives, in solving daily problems like changing the
baby's diaper or making food. At least, I don't know anyone who does.

From: A.L.

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>But the focus of all this is wrong: my proposals for new
builtins (or a
>new semantics for old ones), my new design patterns for
Prolog ... no
>fundamental reaction to that. Just something from Mister
SWI about memory
>vendors - I might react to that in a later contribution.

Page 24 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

There will be NO reaction - for the same reeason why on sci.physics there is no
reaction to discoveries of perpetual motion.

>I am sure of what will happen: the gurus will put me in
their kill-file,
>the other newbies with great ideas will be put off by the
lack of
>response to novelty in this news group and the Prolog
masters will keep on
>helping students out with their homework. I might just
move on to another
>newsgroup: that's not a threath, it is just a real
possibility.

Good! Please!

From: Matthew Huntbach

Subject: Advice from a newbie

Jan Wielemaker wrote:
> Matthew Huntbach wrote:
>> rather than to accept that most of humanity just can't
and never will
>> grasp it. But if that really is the case, we might as
well give up on
>> Prolog.

> Not so soon. I know enough people that have fun and make
a living
> because they understand these mechanisms :-) I very much
doubt there is
> any hope Prolog (or more generally Logic Programming)
will reach wide
> acceptance ever though. Except for mathematicians, its
just not natural
> enough ...

When Prolog was first developed, the main argument for it was that as it was
based on a human mechanism, logic, rather than the electronics of a computer
as standard programming languages are, it should be much more natural and
easy to use than standard programming languages. So if it isn't, what's the
point?

From: Matthew Huntbach
Subject: Advice from a newbie

Page 25 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

anyway <b@rt.luna.be> wrote:
> Why is recursion a bad thing ? Here is the answer:
remember the old days
> when things were better ? One of those better things
was ... the absence
> of recursion in languages like Fortran and Cobol. Most
new Prolog
> programmers these days are not old enough to remember
that of course,

In my case no, when I was first taught Prolog I found it fun and so much more
easy to use than the imperative languages of the day. I didn't find recursion a
barrier, it seemed to me to be a natural way of expressing solutions to problems.

> but the abhorrence from recursion is deeply grafted in
our DNA: it is just
> plain wrong to define a concept in terms of itself, this
is clear to any
> person in the street, whether programmer, matematician,
welder or book
> keeper. The only way to make sense of such self-defining
definitions is
> to rely on a meta-principle: induction. But induction
does not
> always apply: you must have a well-founded order to do it
on, and you must
> check that your recursive definition respects that order.
That's why
> textbooks give a definition of Ackerman's function and
imediately ask you
> to prove that this actually defines something. Now, it is
clear that
> proving anything at all, goes way beyond most
programmer's skills. Still,
> without proofs, all of your recursively defined
predicates may just mean
> gibberish !

If you insist, recursion can be described in terms of how it's implemented
underneath, which is iteratively putting things onto and taking them off stacks.
But being able to use recursion just opens up problem solving techniques - to
suggest it's just "plain wrong" is mad - it's used in all sorts of common software.

Look again at my recursive description of list appending:

"To append two lists, if the first is empty the result is the same as the second.
Otherwise, to append two lists, if you append everything except the first item of
the first list to the second, then append the first item of the first list to the result,
you get the append of the two lists."

Page 26 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Just what is wrong with that? Why do you suggest there is some natural
"abhorrence" of it that you recoil from it?

Or what about

"to sort a list if it has one or no elements it is sorted, otherwise divide it into two
lists, all those elements less than the first, all those greater than the first, sort
each list, append the sorted lists together"

This is quick sort, if you will not use recursion, you will be stuck with less efficient
sorts. Can you point out exactly what is so abhorrent about it that you would
prefer to boycott it than try to understand it?

From: Matthew Huntbach
Subject:Advice from a newbie

pineapple wrote:
>> but the abhorrence from recursion is deeply grafted in
our DNA: it is just
>> plain wrong to define a concept in terms of itself....
>
>> On the other hand, even babies use iteration:

> Huntchback, I think this guy actually has a good point.
In peoples'
> everyday lives, they don't think recursively, they think
iteratively.
> If some guy on the street asks me directions to go
somewhere,

If I want to go somewhere, and I don't know the way, I think of a place in
between where I am now, and that other place. Then either the journey from that
in between place to one of the other places is a straight road, or I have to work
out the journey from my starting point to the mid-point, and work out the journey
from th mid-point to where I want to go. That's recursion.

> Note that I am not putting down recursion, nor the need
for a newbie
> to learn recursion in Prolog. Nor am I advocating Prolog
to
> (necessarily) get away from recursion. I am merely
answering your
> previous question by saying I believe this guy makes a
strong point
> about it "being in the DNA." Nobody walks around
thinking recursively
> in their daily lives, in solving daily problems like
changing the

Page 27 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> baby's diaper or making food. At least, I don't know
anyone who does.

Suppose I'm climbing to the top of the building. I climb a set of steps, turn round
and either I'm at the top, or there's another set of steps facing me. If there's
another set of steps facing me, I've reduced the number of sets of steps I have to
climb by one, but I'm still faced with a smaller version of the same problem -
climbing a number of sets of steps to the top of the building. That's recursion.

If I'm mowing the lawn, what do I do - I mow part of the lawn, then I've reduced
the problem to mowing the rest of the lawn, which I do in the same way. That's
recursion.

Now, I have to accept, because I've seen it so many times, and this guy is a
particularly pathological case, that many people do find recursion hard to use,
particularly when expressed using formal notation. But I think one of the points
about Prolog is that it's a language where recursion is even more central than
other languages, because it replaces loops. That's why it can be a good teaching
tool, because it *forces* people to use recursion rather than seek escape routes
from it. I don't think it helps just to write it off as so difficult one won't even bother
with it, and instead will use all sorts of complicated mechanismss to get round it.

From: Boris Borcic

Subject:Advice from a newbie

anyway <b@rt.luna.be> wrote:
> Why is recursion a bad thing ? Here is the answer:
remember the old days
> when things were better ? One of those better things
was ... the absence
> of recursion in languages like Fortran and Cobol.

Actually the first time I heard the name of recursion was in the mid-70es when I
complained to the optional "informatics" teacher that I couldn't translate into
working Fortran the determinant computation method I had just learned in math
class.

"Fortran isn't recursive" I was told. Later that year I wrote a "random instantiator
for formal grammars" that involved encoding (recursive) grammars as Fortran
statements, then having the functions invoked by the statements, rewrite the
unoptimized (and thus very regular) machine code around their calling points, to
turn said machine code into a graph representation of the grammar that was
finally handed to a small interpretor.

That time the mystified teachers exclaimed "but Fortran isn't recursive !??..."

> Most new Prolog

Page 28 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> programmers these days are not old enough to remember
that of course, but
> the abhorrence from recursion is deeply grafted in our
DNA:

Thank God for biodiversity :) And grammar :)

From: Jan Wielemaker

Subject:Advice from a newbie

Matthew Huntbach wrote:
> Jan Wielemaker wrote:
>> Matthew Huntbach wrote:
>
>>> rather than to accept that most of humanity just can't
and never will
>>> grasp it. But if that really is the case, we might as
well give up on
>>> Prolog.
>
>> Not so soon. I know enough people that have fun and make
a living
>> because they understand these mechanisms :-) I very much
doubt there is
>> any hope Prolog (or more generally Logic Programming)
will reach wide
>> acceptance ever though. Except for mathematicians, its
just not natural
>> enough ...
>
> When Prolog was first developed, the main argument for it
was that as it
> was based on a human mechanism, logic, rather than the
electronics of
> a computer as standard programming languages are, it
should be much more
> natural and easy to use than standard programming
languages. So if it
> isn't, what's the point?

In good computer science tradition however I'm afraid nobody actually performed
the tests. Correct me if I'm wrong. In social science they would take a lot of
students, split them into two groups and run an experiment. Thats not an easy
experiment as it depends on how you prepare the students, the problems and
the metrics you define for a good/better result. Still, if this experiment was
carried out in enough CS departments we could probably say something sensible
about this claim.

Page 29 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

CS has developed a lot of languages, but basically no evaluation :-) They are
(almost) all equally expressive (= Turing complete). Some might not be able to
represent certain problems with optimal complexity. Some programmers like
logic, others iteration, some like recursion, some don't, some like types, some
don't, some like objects (in many flavours) and some don't.

As we cannot compare languages the only remaining question is whether you
like the language or not. I happen to like Prolog :-) As long as there are enough
people like me, Prolog has a point. Its no different than pizas, as long as there
enough people that like them, making Pizas makes sense.

B.t.w. it is totally irrelavant to this discussion what the original developers had in
mind.

From: Pineapple

Subject:Advice from a newbie

Matthew Huntbach wrote:
> When Prolog was first developed, the main argument for it
was that as it
> was based on a human mechanism, logic, rather than the
electronics of
> a computer as standard programming languages are, it
should be much more
> natural and easy to use than standard programming
languages. So if it
> isn't, what's the point?

Good question. The answer is, there doesn't necessarily need to be a point. It's
a language, just like any other. If there are people who program in it and like it -
great. If there aren't, there aren't. It's as simple as that.

From: Pineapple

Subject: Advice from a newbie

Matthew Huntbach wrote:
> If I want to go somewhere, and I don't know the way, I
think of a place
> in between where I am now, and that other place....
> That's recursion.

You're an alien :-)

> I don't think it
> helps just to write it off as so difficult one won't even

Page 30 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

bother with it,
> and instead will use all sorts of complicated mechanismss
to get round it.

Agreed.

From: Morin Thurgh

Subject: Advice from a newbie

I feel myself a bit trolled in writing this, both because I am not a Prolog Master,
and because the discussion has already degenerated, but I'll give it my 2 cents
nonetheless.

It seems to me that the basic issue in your writing is that you expect Prolog
underneath model of computation to be different from what it is: the database
alteration by means of retract and assert* is not intended to be particularly
efficient, because the focus of Prolog approach is meant to be more on rules
application than on facts alteration.

Modifying the knowledge base just to store temporary results is obviously
possible, and as other threads would tell you, exactly one of the things that
newbies, like you qualify yourself, tend to overuse.

I saw, long time before ISO, code similar to yours in many students code
snippets; they were OK, but not as elegant as other solutions designed not to
leave intermediate traces of their execution into the knowledge base they then
had to remove right before completion (that many times were not fully cleaned
too, defect that does not seem to affect your examples). This is to plainly say that
your code looks correct, but neither particularly innovative, nor actually efficient.

The lack of efficiency in altering the knowledge base loose relevance when it can
help implementing something like non-chronological backtracking, but that's a
different story.

anyway <b@rt.luna.be> wrote:
> 1) maybe you find my expercience too limited, but my
versions of rev
> and app show clearly that the sequence member(X,L),
asserta(foo(X))
> is very useful: it is worth lifting this to the status of
a design
> pattern and have it abbreviated to something like FORALL
X IN L
> ASSERT foo(X) What do people think about this ? [I am
transferring
> stuff from my other favourite languages - in particular
COBOL - to
> Prolog here, but this will help wider acceptance of

Page 31 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Prolog, I am
> sure]

[Well, I'm afraid statements like your last sentence above are not preparing the
right mood around your other text! :) Seriously: I know almost nothing about
Object Oriented Cobol, but verbosity, rigidity of structure, and imperativeness of
plain ol' COBOL have quite a little to share with Prolog, IMHO.]

I personally think that member(X,L), asserta(foo(X)) is already a quite compact
way to express your need, not to urge for a more concise replacement.

> 2) let's focus on my definition of rev for now (the app
version has
> the same issue): it works fine for lists of atoms, or
integers, mixed
> (atoms and integers) lists and even lists whose elements
are any term
> without variables (some textbooks name these terms
ground, like
> coffee :-); but when I reverse a list with terms with
variables, then
> these variables become disconnected; here is an example:
>
> ?- rev([X],[Y]), X == Y. No
>
> I have checkd this result in SWI, GNU, XSB, CIAO,
ECLIPSE, SICStus
> and B-Prolog: always the same No.

Whether there was not a rev([a],[a])-like fact in your base, this is not surprise. It's
a consequence of the closed world hypothesis, combined with the inability of
Prolog to perform higher order logic reasoning, I would say.

> 3) let's now focus on my app/3: somehow every Prolog
implementation I
> tried got the complexity of my predicate wrong; my code
is cleary
> O(n) with n the length of the first argument; but I have
noticed that
> Prolog systems make it into O(n*n) in practice; that's
no good; no
> wonder Prolog is hardly used - please Prolog
implementors, do a
> favour to your language and get this right !

Might I ask how you measured that?

> 4) both my rev/2 and app/3 exhibit an even stranger
thing: they are
> also linear in the size of the ELEMENTS of the involved

Page 32 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

lists;
> everyone with half a brain just knows that append and
reverse are by
> nature independent of the size of the list elements - so
why are
> Prolog implementations getting this one wrong as well ?
why is it too
> difficult to get polymorphic types right for you ?

Ditto.

> 5) ...Hard to believe, but there you go ! Apparently, the
added call
> to rev/2 operates in the same dynamic predicate space as
the toplevel
> call to app/3. For me this almost blew it. Luckily the
fix is easy:
> Prolog should encapsulate its asserts/retracts in a
dynamicaly scoped
> way. Shouldn't be too difficult for Prolog implementors
to
> accomodate for such a nice principle, I'd say.

Here again, the fundamental idea of how the knowledge base is meant to be
used is key.

> 6) The following made me really laugh: none of the
predicates I wrote
> (including rev/2 and app/3) work backwards, i.e. ?- app
(X,Y,[1,2]).
> does not split [1,2] in all possible pairs of lists
making up [1,2].
> Still, all Prolog textbooks cannot stop talking about
this feature.
>
> It seems that all this fuzz about bidirectional
programming in Prolog
> is just a myth. No big deal for me: I will not miss it.
But why such
> bad marketing ?

I'm afraid the books you read weren't clear enough on how unification works, or
that their authors were cheating.

> I do have some more advice for the Prolog community, in
particular
> about the cut (!/0) whose scope I find rather limited,
but maybe more
> about that later: this was enough for one day's work. I
am off now,

Page 33 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> to refactor some more predicates. On my todo list are the
inverse of
> merg/3, and I would really like a version of member/2
which does not
> come from the library. I have seen the library version of
member/2
> and it is extremely recursive: it is both left and right
recursive.
> Probably Prolog programmers don't even know this, or else
they would
> avoid it as the plague: how can you be sure it works
correctly ? It
> must be based on an weird programming paradigm from the
seventies or
> maybe even the sixties. Anyway, if you feel you can
contribute,
> please do so in this newsgroup: together we can improve
the world, or
> at least Prolog !

My understanding of right recursion and left recursion relates to grammar
production rules and, indirectly, to parser classification, but that doesn't fit your
statement. Might I ask you to elaborate further your conjecture on the "weird
programming paradigm"?

From: Matthew Huntbach

Subject: Advice from a newbie

Morin Thurgh wrote:
>> 6) The following made me really laugh: none of the
predicates I wrote
>> (including rev/2 and app/3) work backwards, i.e. ?- app
(X,Y,[1,2]). does
>> not split [1,2] in all possible pairs of lists making up
[1,2]. Still, all
>> Prolog textbooks cannot stop talking about this feature.
>>
>> It seems that all this fuzz about bidirectional
programming in Prolog
>> is just a myth. No big deal for me: I will not miss it.
But why such
>> bad marketing ?

> I'm afraid the books you read weren't clear enough on how
unification works,
> or that their authors were cheating.

Page 34 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

This is actually a good point - Prolog is often promoted on the grounds that
programs can be multi-moded, but in reality its operational model means this is
rarely so except for toy examples. Of course, if one insists on a Prolog
programming style which eschews Prolog's underlying logic programming
mechaniamss and instead concentrates on its extra-logical features, one should
be even less surprised to find it doesn't work as advertised.

I think this indicates, again, that a lot of what is said about Prolog now actually
goes back go the early optimistic years of logic programming, and does not
reflect the limited reality of Prolog as a practical language. That is, there was a
logic programming dream of writing statements in pure logic and the machinery
underneath would do all the computations and give you answers and you
wouldn't have to think about how it did it. Prolog was only a first step towards
this, as it wasn't really "magic" and actually was strongly dependent on its
underlying mechanism which anyone doing realistic programming in it would
need to be thoroughly familiar with. But people confused and confuse now
"Prolog" with the logic programming dream, and hence expect Prolog to do what
the dream said logic programming would eventually do.

From: Matthew Huntbach

Subject:Advice from a newbie

Jan Wielemaker wrote:
Matthew Huntbach wrote:
>> When Prolog was first developed, the main argument for
it was that as it
>> was based on a human mechanism, logic, rather than the
electronics of
>> a computer as standard programming languages are, it
should be much more
>> natural and easy to use than standard programming
languages. So if it
>> isn't, what's the point?

> In good computer science tradition however I'm afraid
nobody actually
> performed the tests. Correct me if I'm wrong. In social
science they
> would take a lot of students, split them into two groups
and run an
> experiment. Thats not an easy experiment as it depends
on how you
> prepare the students, the problems and the metrics you
define for a
> good/better result. Still, if this experiment was
carried out in
> enough CS departments we could probably say something

Page 35 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

sensible about
> this claim.

There was some experimental work on this, I'm thinking particularly of Richard
Ennals' work on teaching logic programming in schools, which was published in
the 1982 Internatinal Conference on Logic Programming.

> CS has developed a lot of languages, but basically no
evaluation :-)
> They are (almost) all equally expressive (= Turing
complete). Some
> might not be able to represent certain problems with
optimal
> complexity. Some programmers like logic, others
iteration, some
> like recursion, some don't, some like types, some don't,
some like
> objects (in many flavours) and some don't.
>
> As we cannot compare languages the only remaining
question is whether
> you like the language or not. I happen to like Prolog :-
) As long as
> there are enough people like me, Prolog has a point. Its
no different
> than pizas, as long as there enough people that like
them, making
> Pizas makes sense.

As we have seen from the comments of newbies here, Prolog continues to be
promoted on a manifesto which made sense in the early optimistic days of logic
programming, but has been disproved by practical experience. That is people are
led to believe Prolog is some sort of magic where you don't have to think about
what goes on operationally underneath, and are then disappointed to find it
doesn't work that way. Also, the claim that it is natural and easy falls down
because the natural easy style requires recursion, and as we have seen this
really does seem to be a stumbling block to many people.

Prolog has had the advantage of being extensively promoted in academia,
though more so in Europe than the US. Very many students have been made to
go through learning Prolog. There was at least one university Computer Science
department which taught students to program in Prolog first before any other
language. To some extent Prolog has survived because there were over-
optimistic claims about it when it was first developed, it appealed to academics,
and it became a standard part of the university Computer Science curriculum
appearing there out of habit rather than because there was any real
demonstration of its usefulness. If it were really useful, wouldn't it be more widely
used, given that the huge number of people with Computer Science degrees who
have gone through learning it, this over a period of nearly three decades now?

Page 36 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

I like Prolog, and I've written a book and papers on logic programming, so I can
hardly be accused of an irrational dislike or lack of knowledge of it. However, as
the continuing stream of puzzled enquiries from newbies in this newsgroup
indicates, it does seem there are a lot of people taking it up for no good reason
other than they have heard the old propaganda for it, and then find it doesn't live
up that propaganda. Also we are constantly finding these newbies saying it is a
very difficult language. If the language is difficult, and people are not sure what it
is for, and it is only taken up because people have been misled about its
capabilities, and few people have ever really discovered domains where it is
more suitable than other languages, then just what is its point?

From: A.L.

Subject: Advice from a newbie

Matthew Huntbach wrote:
>was any real demonstration of its usefulness. If it were
really useful,
>wouldn't it be more widely used, given that the huge
number of people
>with Computer Science degrees who have gone through
learning it, this
>over a period of nearly three decades now?

No, because:

a. Majority of programming is GUI development, and Prolog is not strong in this
area,
b. Majority of programming is simple data base front end. Prolog is not strong in
this area,
c. The rest of programming is graphics, number crunching and such. Prolog is
not strong in this area.

In addition, languages don't count that much any more. Important is development
environment (IDE) and associated libraries such as libraries for web
programming, XML, communication, middleware, interfacing with other
languages (what is pain in the butt). Prolog has some libraries, but generally this
stuff is 20 years behind the current state of the art.

As for me, the REAL and substantial advantage of Prolog is constraint
programming. Doing constraint programming in C++/Java (I have already tried) is
like pushing square pegs through round holes. Prolog provides natural
environment for constraint programming paradigm.

From: Matthew Huntbach

Subject: Advice from a newbie

Page 37 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

A.L. wrote:
> Matthew Huntbach wrote:
>> was any real demonstration of its usefulness. If it were
really useful,
>> wouldn't it be more widely used, given that the huge
number of people
>> with Computer Science degrees who have gone through
learning it, this
>> over a period of nearly three decades now?

> No, because:
>
> a. Majority of programming is GUI development, and Prolog
is not
> strong in this area,
> b. Majority of programming is simple data base front end.
Prolog is
> not strong in this area,
> c. The rest of programming is graphics, number crunching
and such.
> Prolog is not strong in this area.

Yes, Prolog is not strong in most of the areas which programming is about.

> In addition, languages don't count that much any more.
Important is
> development environment (IDE) and associated libraries
such as
> libraries for web programming, XML, communication,
middleware,
> interfacing with other languages (what is pain in the
butt). Prolog
> has some libraries, but generally this stuff is 20 years
behind the
> current state of the art.

Part of the problem, I think, is that Prolog doesn't fit well into the object-oriented
model fo programming. Prolog isn't about separate components interacting, it's
really about one big global search tree.

> As for me, the REAL and substantial advantage of Prolog
is
> constraint programming. Doing constraint programming in
C++/Java (I
> have already tried) is like pushing square pegs through
round holes.
> Prolog provides natural environment for constraint
programming
> paradigm.

Page 38 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Yes, part of the sales pitch for logic programming was that it could involve some
complex constraints stuff. As it is, the core of Prolog with its simple search-with-
backtracking and unification mechanism is a very crude form of constraint. So if
you are saying Prolog is good because it handles constraint programming well, I
don't think you're talking about the core of Prolog, rather it's additional facilities
added to some varieties of Prolog. But could these equally well be added through
appropriate libraries to, say Java? Could you talk me through why not? After all,
if it can be done that way, you lose the problem of having to interface with other
languages to do the GUI and database front end and number crunching stuff,
and you say interfacing with other languages is a pain in the butt anyway. You
also lose all those newbies complaining about the language becayse it won't
behave in an imperative way.

From: Pineapple

Subject:Advice from a newbie

Matthew Huntbach wrote:
> You also
> lose all those newbies complaining about the language
becayse it won't
> behave in an imperative way.

Maybe Prolog is good, maybe Prolog is bad. It will stand or fall on its own merits,
fairly or unfairly. But should a language be structured around newbie complaints,
or lack thereof?

From: A.L.

Subject: Advice from a newbie

Matthew Huntbach wrote:
>Part of the problem, I think, is that Prolog doesn't fit
well into
>the object-oriented model fo programming. Prolog isn't
about
>separate components interacting, it's really about one big
global search tree.

Not sure. There was heated discussion here some time ago with mixed results. I
am not sure that object orientation and prolog mix well, but now I am developing
oposite view... maybe I will write about my experience when I collect more facts.

>> As for me, the REAL and substantial advantage of Prolog
is
>> constraint programming. Doing constraint programming in
C++/Java (I

Page 39 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

>> have already tried) is like pushing square pegs through
round holes.
>> Prolog provides natural environment for constraint
programming
>> paradigm.
>
>Yes, part of the sales pitch for logic programming was
that it could involve
>some complex constraints stuff. As it is, the core of
Prolog with its
>simple search-with-backtracking and unification mechanism
is a very crude
>form of constraint. So if you are saying Prolog is good
because it handles
>constraint programming well, I don't think you're talking
about the core of
>Prolog, rather it's additional facilities added to some
varieties of Prolog.
>But could these equally well be added through appropriate
libraries to, say Java?
>Could you talk me through why not?

Well... CLP(FD) is pretty well integrated with Prolog; see SICStus or ECLIPSE. It
is hard to say that CLP is "add on".

However, the most important issue: constraint programming is declarative. Of
course, you can SIMULATE declaraivenes in Java or whatever, but it will be just
simulation. Prolog has all what is needed. Declarativenes in optimization and
constraint solving was recognized long ago in Operations Research. Languages
for defining optimization problems are declarative; see AMPL, OPL, MOSEL,
MPL and such. From my own experience: I prototyped some optimization
problem in MOSEL. This required about 150 lines of MOSEL. However, for
various (technical and business) reasons I had to re-write this model in Java
using the library provided by the same vendor that provides MOSEL. It was well
over 2000 lines.

I am just completing the project that has 15K lines of Prolog. I am not even trying
to think how long it would take to do this in Java (Prolog took about 1000 hours)
and how much this would cost.

From: anyway <b@rt.luna.be>
Subject: Advice from a newbie

Morin Thurgh wrote:
> the database alteration by means of retract and assert*
is not
> intended to be particularly efficient

Page 40 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

[...]
> This is to plainly say that your code looksccorrect, but
neither
> particularly innovative, nor actually efficient.
>
> The lack of efficiency in altering the knowledge base

I am glad you raise the efficiency point - which I also did, but I was talking about
complexity rather. Isn't efficiency a quality of the implementation of a language,
not (necessarily) of the language itself. Or do you imply that assert* and retract
must be necessarily inefficient in Prolog ?

> > ?- rev([X],[Y]), X == Y. No
> >
> > I have checkd this result in SWI, GNU, XSB, CIAO,
ECLIPSE, SICStus
> > and B-Prolog: always the same No.
>
> Whether there was not a rev([a],[a])-like fact in your
base, this is
> not surprise. It's a consequence of the closed world
hypothesis,
> combined with the inability of Prolog to perform higher
order logic
> reasoning, I would say.

First of all, my rev/2 predicate was loaded in the system of course. Secondly, I
would be surprised if the explanation of the No is in CWA or the HOL reasoning
capabilities of Prolog. Maybe you can explain though ?

> Might I ask how you measured that?
[...]
> Ditto.

["that" being O(n)] The usual way: repeatedly making the input larger and
measuring the time. I know that I cannot prove an asymptotic linear behaviour in
this way, but this method works often enough. If you have a proof, that's of
course better.

> > 5) ...Hard to believe, but there you go ! Apparently,
the added call
> > to rev/2 operates in the same dynamic predicate space
as the toplevel
> > call to app/3. For me this almost blew it. Luckily the
fix is easy:
> > Prolog should encapsulate its asserts/retracts in a
dynamicaly scoped
> > way. Shouldn't be too difficult for Prolog
implementors to

Page 41 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

> > accomodate for such a nice principle, I'd say.
>
> Here again, the fundamental idea of how the knowledge
base is meant to
> be used is key.

Please, can you explain to me "how the knowledge base is meant to be used" ?
This would help me I am sure.

> My understanding of right recursion and left recursion
relates to
> grammar production rules and, indirectly, to parser
classification,
> but that doesn't fit your statement. Might I ask you to
elaborate
> further your conjecture on the "weird programming
paradigm"?

The notions of left and right recursion carry over directly from grammars to
Prolog clauses of course. About "weird programming paradigm": in the beginning
there was no recursion and programming could be understood by most people. It
still can in languages that do not force you to use recursion, like Java: anybody
can program in Java these days, no need to have a PhD in computer science or
a twisted mind when mowing the lawn. But languages like Prolog force one to
use recursion, or rely on syntactic sugar (like for loops in ECLiPSe) or even
worse, you must master things like maplist. All these options obscure what is
really going on.

Finally I would like to ask: why are Prolog masters not EXPLAINING things
instead of mistifying them when newbies appear in this forum ? Pineapple, the
other flea in c.l.prolog's pelt, has complained about that too.

From: A.L.

Subject: Advice from a newbie

anyway <b@rt.luna.be> wrote:
>Finally I would like to ask: why are Prolog masters not
EXPLAINING
>things instead of mistifying them when newbies appear in
this forum ?
>Pineapple, the other flea in c.l.prolog's pelt, has
complained about
>that too.

Because newbies know better.

Page 42 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

From: Jan Wielemaker

Subject:Advice from a newbie

anyway <b@rt.luna.be> wrote:
> Morin Thurgh wrote:
>
>> the database alteration by means of retract and assert*
is not
>> intended to be particularly efficient
> [...]
>> This is to plainly say that your code looksccorrect, but
neither
>> particularly innovative, nor actually efficient.
>>
>> The lack of efficiency in altering the knowledge base
>
> I am glad you raise the efficiency point - which I also
did, but I was
> talking about complexity rather. Isn't efficiency a
quality of the
> implementation of a language, not (necessarily) of the
language
> itself. Or do you imply that assert* and retract must be
necessarily
> inefficient in Prolog ?

Well, by definition assert *copies* what you assert and (as was pointed out)
therefore you end with list holding copies of the original list. The traditional
reverse/2 implementation does not copy the content of the list *elements*. That is
not only fundamentally faster, but it also fundamentally different. Otherwise
copy_term/2 would not exist :-)

Or do you wish to argue that after my_copy_term below it is allowed that Copy
== Term if Term is not ground?

my_copy_term(Term, Copy) :-
 assserta(tmp(Term)),
 once(retract(tmp(RawCopy))),
 RawCopy = Copy.

Cheers --- Jan

P.s. Wondering how many real newbies are not already asleep after concluding
that Prolog programmers are completely nuts ...

Page 43 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

Page 44 of 44Nettalk

3/28/2008http://www.cs.nmsu.edu/~epontell/backbone/February08/content/Newsgroups/content.html

EDItorial

INformation

Vol. 21 No. 1

February/March 2008

The ALP newsletter http://www.cs.nmsu.edu/~epontell/backbone/may07/static/newsletter.html

1 of 1 7/2/2007 8:07 PM

The ALP newsletter

What is the ALP Newsletter?

This is the electronic newsletter of the Association for Logic Programming (ALP, http://www.logicprogramming.org/).
It contains news, net postings, call for papers, comment, conference announcements and humour, all related to
Computational Logic.

The newsletter is a quarterly publication, in the months February, May, August and November a new issue is posted.

To remind interested people of the outcome of a new issue, a short digest is sent by email to those who subscribe to it.

The digest is a service anyone can subscribe to, either via web at http://listserv.surfnet.nl/archives/alp.html, or via email
(see instructions below).

We guarantee that subscribers won't receive from us more emails that strictly necessary - four or five emails PER
YEAR is all we are going to send around. It goes without saying that subscribing is free, and that the email addresses in
the list will never - under any circumstance - be given to any third party.

Subscribe/Unsubscribe

How to subscribe to the digest.

a) via web-interface at http://listserv.surfnet.nl/archives/alp.html. (please tick regular in the subscription type)

b) by sending an email to LISTSERV@NIC.SURFNET.NL with in the BODY ONLY the line "subscribe alp
FIRSTNAME LASTNAME", where FIRSTNAME and LASTNAME are - of course - your first and last name. If
you prefer to remain anonymous, send the line "subscribe alp anonymous" instead.

How to unsubscribe to the digest: there are two simple ways.

a) via web-interface at http://listserv.surfnet.nl/archives/alp.html

b) by sending Just send an email LISTSERV@NIC.SURFNET.NL with in the BODY ONLY the line "SIGNOFF
ALP".

Submit http://www.cs.nmsu.edu/~epontell/backbone/may07/static/submit.html

1 of 1 7/2/2007 8:08 PM

Newsletter Submissions are Welcome!

Please send us anything you think will be of interest to newsletter readers. For instance:

news on Computational Logic related products and services;
letters and comments;
abstracts or reviews of papers and books related to logic programming;
short articles of general interest (1-2 pages);
your views on any aspect of LP;
conference reports;
calls for papers and announcements of LP related workshops and conferences;
puzzles and humorous notes, etc.;
suggestions for articles and themes for future editions.

If you have an idea and are unsure about its suitability, do email me or one of the area editors to discuss it further.

Submissions have to be either in plain text or html. Latex submissions are also accepted, as they can be
transformed in html via LaTeX2html. No other formats are accepted.

Enrico Pontelli, epontell aT cs.nmsu.edu

Who is who http://www.cs.nmsu.edu/~epontell/backbone/may07/static/who.html

1 of 2 7/2/2007 8:09 PM

Who is who

Newsletter Editor: Enrico Pontelli
E. Pontelli: New Mexico State University - USA. http://www.cs.nmsu.edu/~epontell/.

Area Editors:

Implementation & NetTalk: Roberto Bagnara
University of Parma, Italy
http://www.cs.unipr.it/~bagnara/

Games, Puzzles, and Applications: Paolo Baldan
University Ca' Foscari, Venice, Italy
http://www.dsi.unive.it/~baldan

Theorem Proving: Brigitte Pientka
McGill University, Canada
http://www.cs.mcgill.ca/~bpientka/

Constraints: Eric Monfroy
University of Nantes, France
http://www.sciences.univ-nantes.fr/info/perso/permanents/monfroy/

Concurrency: Frank Valencia
Lix, Ecole Polytechnique de Paris, France
http://www.brics.dk/~fvalenci

Verification and Model Checking: C.R. Ramakrishnan
SUNY Stony Brook, USA
http://www.cs.sunysb.edu/~cram/

Multi-Agent Systems: Fariba Sadri and Francesca Toni
Imperial College, London, UK
http://www-lp.doc.ic.ac.uk/UserPages/staff/fs/
http://www-lp.doc.ic.ac.uk/UserPages/staff/ft/ft.html

Non-Monotonic Reasoning: Tran Cao Son
New Mexico State University, USA
http://www.cs.nmsu.edu/~tson

Applications of Logic and Constraint Programming: Agostino Dovier
University of Udine, Italy
http://www.dimi.uniud.it/~dovier

Web and Semantic Web: Axel Polleres
Universidad Rey Juan Carlos, Spain
http://www.polleres.net

Webmaster: Andrew O. Gonzalez

Who is who http://www.cs.nmsu.edu/~epontell/backbone/may07/static/who.html

2 of 2 7/2/2007 8:09 PM

