
An Overview of Jason

Rafael H. Bordini1 and Jomi F. Hübner2

1Department of Computer Science
University of Durham

Durham DH1 3LE, U.K.
R.Bordini@durham.ac.uk

2Departamento de Sistemas e Computação
Universidade Regional de Blumenau

Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

Current trends in computer science such as the semantic web, ubiquitous computing,
and self-* systems make it increasingly important that programming technology suitable
for open, unpredictable, dynamic environments are made available. Many abstractions
and techniques that emerged from research in multi-agent systems can have major impact
in the effectiveness of (the development of) such systems. Research into agent-oriented
programming languages aims at making such abstractions and techniques readily available
at the level of programming languages. In this perspective, agent-oriented programming,
combined with ongoing work on agent-oriented software engineering, is likely to lead
to a popular new paradigm for the practical development of those complex distributed
systems.

One of the most studied architectures for cognitive agents is the BDI (Beliefs-Desires-
Intentions) architecture. In the area of agent-oriented programming languages in partic-
ular, AgentSpeak(L) is one of the best known languages based on the BDI architecture.
AgentSpeak(L) is an abstract logic-based agent-oriented programming language intro-
duced by Rao [8], and subsequently extended and formalised in a series of papers by
Bordini, Hübner, and various colleagues. Practical BDI agents are implemented as reac-
tive planning systems : they run continously, reacting to events (e.g., perceived changes
in the environment) by executing plans given by the programmer. Plans are courses of
actions that agents commit to execute so as achieve their goals. The pro-active behaviour
of agents is possible through the notion of goals (desired states of the world) that are also
part of the language in which plans are written.

Jason is a Java-based platform for the development of multi-agent systems. At
the core of the platform lies an interpreter for an extended version of AgentSpeak(we use
“AgentSpeak” to refer to the various extensions of the original AgentSpeak(L) language).
We cannot introduce the language in this short article; a good description of the Jason
language and platform can be found in [4]. Various ad hoc implementations of BDI-
based (or “goal-based”) systems exist, but one important characteristic of AgentSpeak

1



is its theoretical foundation; see [4] for further references. In fact, the implementation
of the AgentSpeak interpreter available with Jason is directly based on the operational
semantics of the language [5].

Current Features of the Jason Platform

The original, abstract version of the language was meant for theoretical work on relating
BDI logics [9] to implementations of reactive planning systems that followed the same
philosophical principles (on “practical reasoning”, i.e., reasoning about how to act). The
AgentSpeakextensions which Jason implements were necessary for turning the original
abstract language into a practical programming language suitable for multi-agent systems.
The language extensions have the following features:

Strong negation: as is well known in the ALP community, close-world assumption
is not ideal for open systems where uncertainty cannot be avoided; it helps the
modelling of such applications if we are able to refer to things agents believe to be
true, believe to be false, or are ignorant about.

Handling of plan failures: because of the dynamic nature of typical multi-agent en-
vironments, plans can fail to achieve the goals they were written to achieve; one
important aspect of reactive planning systems is that the particular choice of the
specific plan to achieve a goal is left for as late as possible so as to consider the
latest information the agent might have, but of course plans can still fail. Jason
has a particular form of plan failure handling mechanism consisting of plans that
are triggered by such failure, giving the programmer the chance to act so as to undo
the effects of any action already done before the plan failed, if necessary, and then
adopting the goal (that was not achieved) again, if the conditions are appropriate.

Speech-act based communication: the philosophical foundation for all the work on
inter-agent communication is speech-act theory; because mental attitudes which are
classically used to give semantics for speech-act based communication are formally
defined for AgentSpeak we can give precise semantics for how agents interpret the
basic illocutionary forces, and this has been implemented in Jason . An interesting
extension1 of the language is that beliefs can have “annotations” which can be
useful for application-specific tasks, but there is one standard annotations that is
done automatically by Jason , which is on the source of each particular belief.
There are essentially three different types of sources of information: percepts (i.e.,
information obtained by sensing the environment), inter-agent communication (i.e.,
information obtained from other agents), and “mental notes” (i.e., beliefs added by
the agent itself which can facilitate various programming tasks).

Plan annotations: in the same way that beliefs can have annotations, programmers
can add annotations to plan labels, which can be used by elaborate (e.g., using
decision-theoretic techniques) selection functions. Selection functions are user-
defined functions which are used by the interpreter, including which plan should be

1Note that annotations as used here do not increase the expressive power of the language but are an
elegant notation, making the belief base much more readable.

2



given preference in case various different plans happen to be considered applicable
for a particular event.

The platform, more generally, has the following features:

Distribution: the platform makes it easy to define the agents that will take part in the
system and also determine in which machines each will run, if actual distribution
is necessary. The infrastructure for actual distribution can be changed (e.g., if
a particular application needs to use a particular distribution platform such as
JADE). Currently, two types of infrastructure are available: one that runs all agents
in the same machine and another which allows distribution using SACI (http:
//www.lti.pcs.usp.br/saci/).

Environments: multi-agent systems will normally be deployed in some real-world en-
vironment. Even in that case, during development a simulation of the environment
will be needed. Jason provides support for developing environments, which are
programmed in Java rather than an agent language. The agent abstractions are
often not appropriate for programming environments, so we provide the necessary
support for this to be done in Java.

Customisation: programmers can customise two important parts of the agent platform
by providing application-specific Java methods for the certain aspects of an agent
and the agent architecture (note that the AgentSpeak interpreter provides only the
reasoning component of the overall agent architecture). By overriding the meth-
ods of the agent class, programmers can define the selection functions (which are
used by the interpreter), belief update and revision functions, as well as a “social”
function which determines from which agents communication can be received. By
overriding the methods of the Java class for the overall agent architecture, program-
mers can customise the way perception of the environment (the agent’s “sensors”),
inter-agent communication, and acting on the environment (the agent’s “effectors”)
are implemented. The latter is useful, among other things because often, before de-
ploying a multi-agent systems, programmers will want to test their system with
a simulated environment. The move from simulation to real-world deployment is
then done by providing the Java code that interfaces the agent’s practical reasoning
with the real-world environment.

Language extensibility and legacy code: the AgentSpeak extension available with
Jason has a construct called “internal actions”. Wherever a literal can appear in
a plan, also an internal action can appear. These are then implemented in Java (or
indeed any other language using JNI) as a Boolean method, and support is given,
e.g., for binding of logical variables. This provides for straightforward language
extensibility by user-defined internal actions, which is also a straightforward way of
invoking legacy code from within the high-level agent reasoning in an elegant man-
ner. Besides user defined internal actions, Jason comes with a library of essential
standard internal actions. These implement a variety of useful operations for prac-
tical programming, but most importantly, they provide the means for programmers
to do important things for BDI-inspired programming that were not possible in

3



the original AgentSpeak language, such as checking and dropping the agent’s own
desires/intentions.

Integrated Development Environment: Jason is distributed with an IDE which
provides a GUI for managing the system’s project (the multi-agent system), editing
the source code of individual agents, and running the system. Another tool provided
as part of the IDE allows the user to inspect agents’ internal (i.e., “mental”) states
when the system is running in debugging mode. The IDE is a plug-in to jEdit
(http://www.jedit.org/), and an Eclipse plug-in is likely to be available in the
future.

Ongoing Research Related to Jason

There is much research related to what has been done or is being done in the development
of Jason . Below, we mention some of this research.

Plan patterns for declarative goals: in recent work, we have devised patterns of
AgentSpeak plans that can be used to define various types of declarative goals
with sophisticated temporal structures. Such types of goals are quite important in
the agent’s literature and an essential feature of agent-oriented programming. This
allows us to express for example that an agent should persist on a goal until there
is evidence that it will be impossible to achieve that goal, or there is no longer any
need to achieve the goal at all. The use of patterns for this (rather than specific
language constructs) provides the same flexibility as the idea of patterns in object
orientation. We are in the process of extending Jason with pre-processing to help
automating the generation of those plan patterns from higher-level specifications.

Organisations: an important part of agent-oriented software engineering is related to
agent organisations, which has received much research attention in the last few
years. We are currently working on allowing specifications of agent organisations
(with the related notions of roles, groups, relationships between groups, social
norms, etc.) to be used in combination with Jason for programming the indi-
vidual agents. The particular organisational model we use is Moise+ [6].

Plan Exchange: Work has been done to allow plan exchange between AgentSpeak
agents, which can be very useful, in particular for systems of cooperating agents,
but also for application in which a large number of plans cannot be kept in the
agent’s plan library simultaneously (e.g., for use in PDAs with limited computa-
tional resources). The motivation for this work is this simple intuition: if you do
not know how to do something, ask someone who does. However, various issues
need to be considered in engineering systems where such plan exchanges can happen
(e.g., which plans can be exchanged, what to do with a plan retrieved from another
agent, who and when to ask for plans). This work is based on the Coo-BDI plan
exchange mechanism [2].

Ontological reasoning: Although this is not available in Jason yet, in [7] it was argued
that the belief base of an AgentSpeak agent should be formulated as a (populated)
ontology, whereby:

4



1. queries to the belief base are more expressive as their results do not rely only
on explicitly represented literals but can be inferred from the ontology;

2. retrieving a plan for handling an event is more flexible as it is not based solely
on unification but on the subsumption relation between concepts;

3. agents may share knowledge by using ontology languages such as OWL;

4. the notion of belief update can be refined given that (ontological) consistency
of a belief addition can be checked;

Concretely, in Jason we plan to use annotations to specify which ontology each
belief belongs to, and use an existing tool to do the ontological reasoning when
required. This further increases the need to have appropriate belief revision.

Belief revision: In Jason (and most other agent-oriented programming platforms)
consistency of the belief base is left for programmers to ensure. The reason is that
automatic belief revision is typically too expensive computationally, thus not appro-
priate for practical agent programming. In [1], a new (polynomial-time) algorithm
for belief revision was introduced. The algorithm is tractable due to simplifying
assumptions which are nevertheless realistic for belief bases as used in agent pro-
gramming. We plan to make available an implementation of an adaptation of that
algorithm for use with Jason .

Final Remarks

Research in the area of agent-oriented programming languages has progressed significantly
in the last few years [3], and has gone a long way since the idea was first introduced
in [10]. A proportion of the many languages that have appeared in the agent programming
languages literature are based on logic programming and the BDI architecture. However,
there are a few aspects of such languages which might not be immediately attractive
for the ALP community, in particular: (i) these language are often meant to be used
for controlling the high level reasoning of an agent only, and are combined with Java
programming for various aspects of a multi-agent system; and (ii) the semantics of agent
languages, because of the practical reasoning aspect (e.g., plan choice and execution, and
the updating of intentional structures), are normally given using operational semantics
rather than the types of logical semantics so familiar to this community.

In this brief article, we have summarised the current features of Jason as well as the
various strands of research related to it. Jason is distributed Open Source under Gnu
LGPL; it is kindly hosted by SourceForge.net, and available from http://jason.sf.

net. A book about Jason is currently being written, and is due to be published in 2007
by Wiley.

References

[1] Natasha Alechina, Mark Jago, and Brian Logan. Resource-bounded belief revision
and contraction. In Proceedings of the 3rd International Workshop on Declarative

5



Agen t Languages and Technologies (DALT 2005), Utrecht, the Netherlands, July
2005.

[2] D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI model with cooperativity.
In Proceedings of the First International Workshop on Declarative Agent Languages
and Technologies (DALT-03), 2003.

[3] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, ed-
itors. Multi-Agent Programming: Languages, Platforms and Applications. Springer-
Verlag, 2005.

[4] Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. Jason and the golden fleece
of agent-oriented programming. In Bordini et al. [3], chapter 1, pages 3–37.

[5] Rafael H. Bordini and Álvaro F. Moreira. Proving BDI properties of agent-oriented
programming languages: The asymmetry thesis principles in AgentSpeak(L). Annals
of Mathematics and Artificial Intelligence, 42(1–3):197–226, September 2004.

[6] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Using the Moise+
for a cooperative framework of MAS reorganisation. In Ana L. C. Bazzan and
Sofiane Labidi, editors, Proceedings of the 17th Brazilian Symposium on Artificial
Intelligence, volume 3171 of Lecture Notes in Computer Science, pages 506–515.
Springer, 2004.

[7] Álvaro F. Moreira, Renata Vieira, Rafael H. Bordini, and Jomi Hübner. Agent-
oriented programming with underlying ontological reasoning. In Matteo Baldoni,
Ulle Endriss, Andrea Omicini, and Paolo Torroni, editors, Proceedings of the Third
International Workshop on Declarative Agent Languages and Technologies (DALT-
05), 2005.

[8] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In Walter Van de Velde and John Perram, editors, Proceedings of the Sev-
enth Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAA-
MAW’96), number 1038 in Lecture Notes in Artificial Intelligence, pages 42–55,
London, 1996. Springer-Verlag.

[9] Anand S. Rao and Michael P. Georgeff. Decision procedures for BDI logics. Journal
of Logic and Computation, 8(3):293–343, 1998.

[10] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.

6


