A m-Calculus Semantics of Java:
The Full Definition

Bart Jacobs and Frank Piessens
{bart.jacobs,frank.piessens}@cs.kuleuven.ac.be

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A
B-3001 Heverlee, Belgium
Fax 43216327996

Abstract. We present a formal semantics of the concurrent object-
oriented programming language Java, as a mapping of Java programs
to m-calculus processes. Our semantics shows how Java features such as
polymorphism, typecasts, exceptions, per-thread memory caching, and
native method invocations can together be modelled in the m-calculus.
Keywords. Semantics, object-oriented programming language, concur-
rency, m-calculus.

1 Introduction

Soon after the introduction of the w-calculus, Walker and others [10, 7] noticed
that this calculus was very suitable for specifying the semantics of concurrent
object-oriented languages. Walker illustrated this by showing how a toy OO
language could be translated. The calculus has been used by different authors
to give semantics to academic concurrent object-oriented languages (or specific
communication constructs in these languages) (a representative example is [6]),
and languages have been built as syntactic sugar over the calculus [5]. But to
our best knowledge, nobody has yet taken the effort to apply these ideas to a
real-life language such as Java or Cf. The only reasonably complete semantics of,
for instance, the Java language is based on Abstract State Machines [8]. Other
approaches to giving a formal semantics to Java either limit themselves to a
small subset of the language, or to sequential execution [2,9,4].

While working on a project about verification of Java programs, we needed
a formal semantics of a very large subset of Java, and we decided to base this
semantics on the m-calculus, extending Walker’s ideas. Our semantics covers
almost the full Java Language Specification [3]. Section 9 gives details of the
differences between our specification of Java and the official JLS.

In this paper, we report on how this 7-calculus based semantics is structured,
and we discuss both the positive and negative aspects of the semantics. In order
to deal with all the complexities of the Java language, we had to extend the
original approach of Walker in many ways. For instance, to deal with concurrency

in Java, a formalization of the Java memory model had to be developed, and an
explicit representation of thread-local storage is present in our semantics.

We assume that the reader of this paper is familiar with both the 7-calculus,
including the syntactic sugar and the typing introduced in the book by Walker
and Sangiorgi [7], and with the Java Language Specification. The rest of this
paper is structured as follows. In Section 2 we describe the general philosophy
underlying the mapping of Java programs to processes. In Section 3 we show
the definition of the mapping. In Sections 4 and 5, we analogously describe the
memory model. In Sections 6, 7, and 8, we analogously describe the mapping of
Java statements and expressions to processes. In Sections 9 and 10, we discuss
our semantics and related work. The notational conventions used in this text are
described in the Appendix.

2 Programs — Semantic Domain

Our notion of program does not commit to a particular way to use a program. A
program is simply a stand-alone set of classes and interfaces. There is no notion
of a main method, and there is also no notion of execution of a program. Rather,
there is the notion of the use of, or interaction with the program at run-time.
We refer to the entity that uses the program as the client.

Let p be a Java program. Our semantics maps this program onto a m-calculus
process P = [p] whose free names correspond to the ways in which the program
p can be used. The free names of P are of the type ProgramChannel, defined as
follows:

data ProgramChannel = MethodChannel(TypeName, Signature)
| NewObject Channel(TypeName)
| NewPublicSuperChannel(TypeName)
| NewInternalSuperChannel(TypeName)
| UpcastChannel(TypeName, TypeName)
| IdentityServerChannel

2.1 Identities

All program channels are functional, i.e. stateless, except for IdentityServer-
Channel. This channel is of type o(NaturalNumber). Each time an input action
is performed on this channel, a new natural number is retrieved. As we will see
further, these are used as identities of objects, threads, and field master variables.

2.2 Statically-Bound Method Invocations

The primary way to use a program is by invoking one of the program’s methods.
Our semantics specifies the observable behavior of a program when one of its

methods is invoked. One or more of the following things can happen when a
method is invoked:

— The invocation completes normally
— The invocation completes abruptly because of an exception
— A method not implemented inside the program is invoked by the program

The first two things can occur only once for each invocation. The third,
however, can occur more than once, and, if new threads are started inside the
program, some of these program-to-client invocations can even occur after the
client-to-program invocation completes. We believe that our treatment of this
kind of invocations, which are known as callbacks, is a particular strength of our
semantics.

There are two kinds of invocations of methods not implemented inside a pro-
gram: native method invocations and dynamically-bound invocations on objects
passed (directly or indirectly) as arguments of an invocation to the program,
when the objects are instances of classes declared outside of the program, i.e.
classes declared by the client. (See Section 2.5.)

It may seem wrong to treat native method invocations as observable events.
Indeed, when looking from the point of view of the developer of an application,
the observable events are e.g. the appearances of windows and buttons on the
screen, rather than the underlying native method invocations, which are not
even well-documented. But, when defining a semantics of the Java language
(as opposed to the Java Platform, which includes the class libraries and the
native libraries), we consider every interaction between the program and its
environment (i.e. the client) to be observable.

The behavior of a method invocation depends on which thread performs the
invocation, in two ways: firstly, some thread 7" is allowed to enter a synchronized
statement owned by some thread T’ only if T' = T’; secondly, the behavior of a
method which accesses fields is more deterministic if previous accesses occurred
in the same thread, because of Java’s memory model, which intends to permit
efficient implementations on common hardware platforms. The memory model
allows an optimizing compiler to cache variables in CPU registers, and since each
thread conceptually has its own set of registers, these caches act like per-thread
“working copies” of the variables.

This dependency of the behavior of a method invocation on which thread
performs the invocation is reflected in our semantics by the fact that a so-called
context channel must be passed as an argument of each output action that
corresponds with a method invocation.

Our semantics defines a process NewContext(z), parameterized on a chan-
nel name z. This process encapsulates the semantics of creating a new thread.
NewContext(x) retrieves a new number from the identity server and creates a new
context on channel x, which can then be used for output actions corresponding
to method invocations.

Suppose the program p declares a class C' which declares a static void method
m with no arguments. Then, the type of the channel MethodChannel(C, m()) is
#(Context, o(), o(Exception)). The first argument is the context corresponding to

the thread that invokes the method. The second argument is the channel that is
signaled upon normal completion of the invocation. The third argument is the
channel that is signaled upon abrupt completion because of an exception. The
exception object is sent as an argument.

The process P = [[p] corresponding to a Java program p is output-only on
all method channels that correspond to native methods. When the program
p invokes a native method, this corresponds to the process P performing an
output action on the corresponding method channel. The client of the program
might wish to complete the invocation normally; this corresponds to an output
action by the client on the second argument of the action corresponding to the
invocation.

2.3 Creating Objects

Another common way to use a program is by creating an instance of one of
the program’s classes. Suppose the program p declares a class C. Then the type
of the channel NewObjectChannel(C) is t(o(Object)). The client of program p
creating an instance of class C' corresponds to performing an output action on
NewObjectChannel(C'), passing as an argument a channel on which the program
sends the newly created object. Note that we do not consider constructor invo-
cation to be part of object creation; we do not distinguish constructor invocation
from method invocation. (The Java Virtual Machine follows the same approach.)

2.4 Using Objects

An object can be used in the following ways:

— invocation of an instance method

— use or assignment of an instance field

— identity comparison with another object
— typecast

— synchronization on the object

The channel type Object for a given class C' with superclass S is defined as
shown in Figure 1. The following auxiliary types are used:

NaturalNumber = o(i(), i(NaturalNumber))
Lock = §()

Typecasts Performing an upcast of an object of type C' to a supertype T
corresponds to performing an output action on the UpcastChannel(C,T') channel,
passing as arguments the object and a channel on which the program will send
a view of the object of type T'.

Performing a dynamic cast of an object to a type T corresponds to performing
an output action on the object’s dynamic cast channel, passing as arguments an

Object, = #(NaturalNumber, identity

Lock, lock
Variable(Option(NaturalNumber)), lock owner
Fieldsprivate,c, private fields
Fieldsinternal,cs internal fields
Fieldspubiic,c, public fields
Methodsinternal,c, internal methods
Methodspubiic,c, public methods
Objectg, super-object
DynamicCast) dynamic cast

Fig. 1. Definition of Object

encoding Enc(T) of the name of T as a natural number and a channel on which
the object will send a view of itself of type T'. A dynamic cast channel is of type
DynamicCast, which is defined as follows:

DynamicCast = o(Enc(T) : NaturalNumber,i(Option(Objectr)))

(The above type definition is informal; it reflects that the type of the second
argument of an output action on the dynamic cast channel depends on the value
of the first argument.)

Fields Fields,c = i(..., Field(T;),...) where ..., f; : T;,... are the fields of
accessibility a declared or inherited by class C.

Field(T) = i(Variable(T), NaturalNumber)

Through the channel corresponding with some field, retrieved from a par-
ticular object, the client can receive the variable containing the field’s value, as
well as a unique natural number distinguishing this variable from all other such
variables in the same object and in other objects. Whenever an object of some
class C' is created, such a variable is created for each field declared in C' and for
each field declared in a superclass of C.

Dynamically-Bound Method Invocations Methods, c = (..., Method(p;,r:), - ..)
where ..., m;(p;) : 74,... are the methods of accessibility a declared or inherited
by class C.

Method(p, r) = o(Context,i([r]), i(Exception), [p1], - - -, [Pn])

Note that the target object need not be passed as an argument of the output
action corresponding with a dynamically-bound method invocation.

2.5 Declaring Subclasses

Yet another way to use a program is by declaring a class D that extends a class
C declared in the program. In itself, this does not cause any run-time behavior.
It is when an instance of the client-declared class D is created, that the client
needs to request a new super-object of class C' from the program. As part of
the request, the client includes pointers to the methods declared or inherited by
D (with the this parameter already bound) which override methods declared
or inherited by C. Depending on whether C' and D are in the same package,
respectively in different packages, the NewlnternalSuperChannel(C) channel or
the NewPublicSuperChannel(C) channel are used for this. This reflects the fact
that internal methods in C' can only be overridden if D is in the same package.
The NewlnternalSuperChannel(C') channel is of the following type:

#(Methodspublic,c, Methodspackage, ', #(Object))
The NewPublicSuperChannel(C') channel is of the following type:
t(Methodspublic,c, £(Object))

(The Methods,,c types are as defined in the previous subsection.)

3 Programs — The Mapping

A Java program is a finite set of class and interface declarations:
p={Ci,....,Cp, I1,..., I,}
The program p is mapped onto a process as follows:
o] = IaServer | [C1] | -+ | [Cal [TR] -+ | [
IdServer, the identity server, is defined as follows:

IdServer = new (1l(n).identity-server(n).l{Succ n) | [{Zero))

3.1 Interface Declarations

Let T be the name of interface I; let Iy,...,I; be the superinterfaces of I,
including I itself. Let T; be the name of interface I;.

Ul =Ui|- Uk

Let s1,...,54 be the signatures of the methods declared or inherited by I;.
The upcast server U; is defined as follows:

U; =IT:: 1 T;(or).7({o, public-methods « {s; < o.public-methods.s1, ..., s, < o.public-methods.s,}})

where T:: T T; is a shorthand for UpcastChannel(T,T;). The process U; accepts
an object o of type Object; and returns a copy of o in which the public-methods
item has been updated to leave out the methods of interface T that are not
methods of interface T;.

3.2 Class Declarations

Let s1,...,54 be the signatures of the methods declared or inherited by class C.
Let T be the name of C. Let Ti,...,T; be the names of the superclasses and
superinterfaces of C, including C' itself.

[Cl=N|[Nsp|Nsr|My| - |My|Us|-- Uy

Upcast Servers
—IfT;is C:
U, =IT:: 1 T;(or).T{0)
— If T} is a superinterface of C"
Let s{,...,s. be the signatures of the methods declared or inherited by T;.
U; =!T:: 1 T;(or).7({o, public-methods < a})

where

I

e o.public-methods.sé}

a = {s! — o.public-methods.s!,... s

— If T; is a superclass of C"
Let S be the immediate superclass of C.

U, =IT:: 1 T;(or).S:: T T;(o.superr)

Method Servers If the method declared or inherited by C with signature s;
is static, then let

a = context, return, throw, ay, . . ., ay

Otherwise:

a = context, return, throw, this,ay, ..., an

Declared Methods Suppose C' declares the method.

If this method is declared abstract or native, then M; = 0. Otherwise, let
P1,---,Pn be the parameter names and let S be the statement that constitutes
the method body.

M; =!T::s;(a).newpy - - pp, (P1{a1) | -+ | Dnlan) | new break ([S]; return))
Inherited Methods Suppose C' inherits the method from its immediate superclass

S.
Let b be the result of substitution of this.super for this in a.

M; =!T::s;(a).S::s;(b)

New Internal Super Server

Root Class If C is the root class of the program (i.e. the one that does not extend
a superclass):

Let ..., f?,... be the names of the private instance fields declared in C.
Let ..., f!,... be the names of the internal instance fields declared in C. Let
.., f7,... be the names of the public instance fields declared in C.

These names are used as labels and as w-calculus names, depending on the
context.
Let f = f1,..., fr be the names of all fields declared in C.

Ngr =!T::new-internal-super(pir).newolv sd f identity-server(n).(O | L | F)

O = 7({identity < n,
lock « I,
lock-owner «— v,
private-fields — { ..., f7 — f7,... },
internal-fields « { ..., fi « fi,...},
public-fields < { ..., fF — fP ...},
internal-methods « 1,
public-methods « p,
super «— s,

dynamic-cast « d})

L = ([v] « Nothing; new w (lw.l.l.w | w))

F=F|-|F
Let t; be the type of field f;. Let (¢;)o be the default value of type ¢;.

F; = identity-server(n).new m (m((t;)o) | ! fi(nm))

Non-Root Class, Superclass in Same Package Let S be the name of the imme-
diate superclass.

Let ...,sP,... be the signatures of the public instance methods declared
or inherited by S. Let ...,sf’i’i, ... be the signatures of the internal instance
methods declared or inherited by .S which are also signatures of internal instance
methods declared or inherited by C. Let ...,s]""",... be the signatures of the
internal instance methods declared or inherited by S which are overridden by

public methods declared in C.

Ngr =IC:new-internal-super(pir).(s <= S::new-internal-super{ay az); P)

where
_ 5,p s,p
ap={...,8;" —ps;*t ...}
and
ag={...,8]"" —ast sl = pstP)

Let f = f1,..., fr be the instance fields declared by C.

P=newf(O|F)

Let ..., f?,... be the private fields declared by C'. Let ...7ff’d, ... be the
internal fields declared by C. Let ..., Z " ... be the internal fields inherited by
C. Let ..., f7 ... be the public fields declared by C. Let ..., f7* ... be the
public fields inherited by C.

O = 7({identity < s.identity,
lock « s.lock,
lock-owner < s.lock-owner,
private-fields — {..., f7 — f7,... },
internal-fields «— { ... ,ff’d — fii’d, A, fz“ — s.internal—fields.ff’i7 oo b
public-fields «— { ..., f74 — P4 ... 2" — s.public-fields. f77, ...},
internal-methods « 1,
public-methods « p,
super «— s,

dynamic-cast < s.dynamic-cast})

F=F/|--|F,
Let t; be the type of field f;. Let (¢;)o be the default value of type ;.

F; = identity-server(n).new m (m((t;)o) | ! fi(nm))

Non-Root Class, Superclass in Different Package Let S be the name of the
immediate superclass.
Let ...,s]P, ... be the signatures of the public instance methods declared or

inherited by S.

Ngr =IC::new-internal-super(pir).

(s < Sunew-public-super({ ...,s;* «— p.si? ... }); P)

’ 1

Let f = fi1,..., fr be the fields declared by C.

P=newf(O|F)

Let ..., f?,... be the private fields declared by C. Let ..., f{,... be the
internal fields declared by C. Let ..., f? ’d, ... be the public fields declared by
C.Let ..., fP" ... be the public fields inherited by C.

O = 7({identity < s.identity,
lock «— s.lock,
lock-owner < s.lock-owner,
private-fields — { ..., f7 — f7,... },
internal-fields «— { ..., fi «— fi,...},
public-fields «— { ..., /7% — 2% ... P — s.public-fields. f77, ..},
internal-methods « 1,
public-methods « p,
super « s,

dynamic-cast < s.dynamic-cast})

F=F |- |F

Let t; be the type of field f;. Let (¢;)o be the default value of type ;.
F; = identity-server(n).new m (m((t;)o) | ! fi(nm))

New Public Super Server Let ...,s! --- = si,...,s. be the signatures of

the internal instance methods declared or inherited by C'.

Ngp =!T::new-public-super(pr).

new --- st -+ (0 <= Cunew-internal-super(p { ..., st <« s,...}); P)

79

P=Fo).(P | --- | P,)

Let st =m(t1,...,t,).

P =lsi(crtay -+ a,).Cusi{crtoay -+ ay)

New Object Server Let ...,s? --- = s} ..., sP be the signatures of the public

7

instance methods declared or inherited by C.

p

N =IT:new(r).new - - s¥ -+ (0 <= Cinew-public-super({ ..., st «— s, ... }); P)

P=7).(D|Py |- | P)

D =lo.dynamic-cast(nr).Dq

Let m be a natural number that is greater than all encodings of names of
superclasses or superinterfaces of C.

D,,, = 7(Null)
For each 7 < m:

Zero = D]

D; = case n of
! Succ n = D,y

If 4 is the encoding of a superclass or superinterface type name 7":

D] = (0o« T:: 1 T{0); 7(Object 0))

Otherwise:
D} = 7(Null)
Let s? = m(ty,...,t,).
P, =ls(ertay -+ a,).Tust (crtoay -+ ay)
4 Memory Model — Semantic Domain

As will be discussed below, a statement or expression accessing a field retrieves
a working copy for the field and then accesses the field via this working copy. In
our semantics, the definition of the behavior of working copies is implied in the
definition of the NewContext process mentioned above.

We see a working copy holding values of type T as a state machine with a
set of states given by the constructors Empty, Clean(T), and Dirty(T), and a set
of actions given by the constructors Use(T'), Assign(T'), Lock, Unlock, Load(T),
and Store(T).

When a working copy is created, it is in the Empty state. The Use and Assign
actions correspond to input and output actions on the working copy’s channel,
which occur as part of the evaluation of field use and assign expressions in the
program. The Lock and Unlock actions occur when the “lock working copies”,
respectively the “unlock working copies” channels of the context are signalled

as part of the execution of synchronized statements. The Load and Store actions
are always enabled; they can occur at any time. This reflects the unspecified
nature of the optimizations performed by just-in-time bytecode compilers and
CPUs with respect to memory access.

The transition table is as follows:

Empty Clean(w) Dirty(w)
Use(w) — Clean(w) Dirty(w)
Assign(w')| Dirty(w') Dirty(w') Dirty(w')
Lock Empty Empty Dirty(w)
Unlock Empty Clean(w) —
Store(w) — — Clean(w)
Load(w') |Clean(w') Clean(w’) — —

A dash — means that that action is not allowed in that state.
The entry in the transition table for the Lock action in the Dirty(w) state is
somewhat problematic; this is discussed in Section 9.

5 Memory Model—The Mapping

In this section, we give a textual description of the mapping of the memory
model. The actual m-calculus process expressions can be found on the website
[1]; they have been omitted here because they mostly concern straightforward
but tedious manipulation of data structures.

The channel z in the process NewContext(x) is of type Context, which is
defined as follows:

Context = o(NaturalNumber, context identity
i(VT.(Field(T),o(8([T]))), get working copy
i(o()), lock working copies
i(o()), unlock working copies

The channel z is called the context channel.

In Section 6 we explain how the execution of statements and the evaluation of
expressions interacts with this process. Here, we describe the process’s behavior.

The first element of the tuple which can be received from the context channel
is the context identity. The NewContext(x) process receives a new identity from
the identity server before it starts serving the tuple on the context channel.

The second element is a channel through which the process receives requests
for working copies of fields. A request for a working copy is a tuple containing
a field and a channel on which to return the working copy. A field is a tuple
containing a variable (i.e. the master variable for the field) and a field identity.
The process keeps a table with associations of field identities with working copies.
The table is initially empty. When there is no entry in the table for the field
identity of the field passed in the request, a new working copy is created and a

new entry is added to the table, linking the field identity in the request to the
new working copy. Creation of a new working copy comes down to the creation
of a new state machine which implements the transition table displayed in the
previous section.

The third element in the tuple which can be received from the context channel
is a channel through which a request can be sent to perform the Lock action on all
working copies in the context’s table. The process signals the channel provided
in the request after all Lock actions have been performed.

The fourth and last element in the tuple is a channel through which a request
can be sent to perform the Unlock action on all working copies in the context’s
table. Again, the process signals the channel provided in the request after all
Unlock actions have been performed.

6 Statements and Expressions — Semantic Domain

Somewhat independent of the above (from the client’s point of view), we also
define a “behavior space” for statements and expressions. A phrase is a statement
or an expression. Our semantics maps each phrase ¢ to a m-calculus process
P = [¢]. The free names of P are of the following type:

data PhraseChannel = DoneChannel
| ThrowChannel
| ReturnChannel
| BreakChannel(Label)
| ContextChannel
| LocalVariable Channel(Local Variable Name)
| ThisChannel
| ProgramChannel(ProgramChannel)

In a way, each phrase in a program has the same point of view as the client of
the program. Phrases invoke methods and instantiate classes rather than declar-
ing them. P is output-only on ProgramChannel(c), for each program channel
c.

If ¢ is a statement or an invocation of a void method, DoneChannel is of type
o(). Otherwise, DoneChannel is of type o([T]), with T the type of ¢. [T] refers to
the mapping of Java types to m-calculus types which is implied by our semantics.
Normal completion of ¢ corresponds to an output action on DoneChannel, with
the result of evaluation, if any, as an argument.

ThrowChannel : o(Exception) Abrupt completion of ¢ because of an excep-
tion corresponds to an output action on this channel.

If the method containing ¢ is declared void, ReturnChannel : o(); otherwise,
ReturnChannel : o([T]), with T the return type of the method containing ¢.

Abrupt completion because of a return statement corresponds to an output
action on this channel.

For any label I, BreakChannel(l) : o(). Abrupt completion because of a break
statement corresponds to an output action on this channel.

ContextChannel : Context Like invocation of a method, the behavior of ex-
ecution of a phrase depends on the thread that performs the execution. The
ContextChannel reflects this fact in our semantics of statements and expres-
sions. The context channel corresponds to the thread in which the phrase is
executed.

Context = i(NaturalNumber, context identity
o(VT.(Field(T),i(t([T])))), get working copy
o(i()), lock working copies
o(i()), unlock working copies

A phrase uses the context identity for comparison with the lock owner of an
object, and to register the current thread as the lock owner of an object.

A phrase uses the “get working copy” channel to retrieve a per-thread work-
ing copy for a given field. A phrase never directly reads or writes a field’s master
variable; it interacts with the working copy only. A use of a field corresponds
with an input action on the working copy’s channel; an assign corresponds with
an output action on the same channel.

A phrase performs an output action on the “lock working copies” channel and
then performs an input action on the output action’s argument immediately after
it acquires the lock on an object. It performs the same protocol on the “unlock
working copies” channel immediately before it releases the lock on an object.

If ¢ is in the scope of a local variable n : LocalVariable Name of type T, then
LocalVariableChannel(n) : ¢([T]). A use or assign of a local variable corresponds
to an input action on the corresponding local variable channel, followed by an
output action on the same channel. The argument of the input action is the vari-
able’s current value. This value is immediately passed through as the argument
of the output action in case of a use; in case of an assign, the argument of the
output action is the newly assigned value.

Let C' be the class containing ¢. ThisChannel : Object,.

7 Expressions — The Mapping

In this section we define a translation that associates a Java expression E ap-
pearing in a Java program P with a m-calculus process [E]p. We will usually
omit the subscript.

Below, we use the names done, return, etc. as shorthands for DoneChannel,
ReturnChannel, etc. Also, we use n as a shorthand for Local Variable Channel(n)
and ¢ as a shorthand for ProgramChannel(c).

7.1 Some Sugar

The use of the term local in the following definition refers to thread-local working
copies of fields, rather than to block-local variables.

struct context = {context-identity, get-local, lock-locals, unlock-locals}

struct object = {identity : nat, lock, lock-owner,
private-fields, internal-fields, internal-methods, public-fields, public-methods,
super, dynamic-cast}

data ref = Null | Object object

(v« P; Q) = new start (new done (P | done(w).start{w)) | start(v).Q)

Null = ThrowNPE

NotNull(P) = case r of {Object o=P

with
ThrowNPE = (r «— [new NullPointerException()]; throw(r))

7.2 Literal Expressions

Let ¢ be a literal of type int.
[i] = done(i)

7.3 Operators on Primitive Values

Let F7 and F5 be expressions of type int.
HEI + EQ]] = (Zl — [[Elﬂ; i2 — [[EQ]], done<i1 + ZQ>)

7.4 Reference Comparison

Null =P

[E1 == Es] = (r1 < [E1]; 2 < [E2]; case rq of {Object o1 = Py

)

with

Null = done(true)
Object 02 = done(false)

P; = case ry of {

Null = done(false)

2 =Ccaserz o {Object 02 = done(o;.identity = oo.identity)

7.5 The Conditional Expression

Let Ec be an expression of type boolean and let Er and Er be expressions of
some type T

[Ec ? Er : Ep] = (b« [Ec]; (b? [Er] : [EF]))

7.6 This

[this] = done(Object this)

7.7 Local Variables
[n] = n(v).(@(v) | done(v))

[n = E] = (v [E]; n(w).(7(v) | done(v)))

7.8 Fields

Let the static type of expression F be C, where C is a class declared in program
P.

Let a be private, internal, or public, according to the accessibility of field f in
class C.

GetField(p, C, f, P) = NotNull(l < context.get-local{o.a-fields. f); P)

[E.flp = (r < [E]; GetField(p,C, f, (I(v).done(v))))

Suppose the following expression appears in a class D that extends a class

C:

[super. f] = [((C) this).f]

[Ei.f = By = (r «— [E1]; v« [Es]; GetField(p, C, f, (I{v).done(v))))

7.9 Static Method Invocation

Suppose in the following expression overload resolution selects the method with
signature s.

[C.m(Eq,...,E)] = (v1 < [Erl; -+ ;05 < [En]; C::s{context done throw vy - - -

Un))

7.10 Instance Method Invocation

Suppose in the following expression the type of E is T and overload resolution
selects the method with signature s.
If the method is private:

[E.m(Ey,...,E)] =
(r «— [E];v1 < [E1]; -+ ; vn < [En]; NotNull(T::s(context done throw ov; -+ v,)))

Otherwise, let a be internal or public, as appropriate.

[E.m(Ey,...,E)] =

(r — [E]; v1 < [E1]l; -+ s vn < [En]; NotNull(o.a-methods.s(context done throw vy - - -

7.11 Super Invocation

Let S be the immediate superclass of the class in which the expression appears.
Suppose in the following expression overload resolution selects the method with
signature s.

[super.m(FE1,...,E)] =
(v1 < [Er]; -+« 5 vn < [En]; S::s(context done throw (this.super) vy -« vy,))

7.12 Typecast Expressions

Let expression E be of type T7.
If T5 is a superclass or a superinterface of T; (that is, if the typecast is a
widening conversion, i.e. an upcast):

Null = done(Null)

[(Ty) E] = (r « [E]; caser of {

Otherwise:

Null = done(Null)
E] = E]; case r of . _—
[E as To] = (r — [E]; " {Object 0 = o.dynamic-cast([T5] done))
Here, [T is some encoding of the type name T in the datatype nat. For
example, one could take the UTF-8 encoding of the type name and interpret it
as a natural number.
Downcast and instanceof expressions can be translated using as expressions.

Object 01 = (02 <= Th:: T To2(01); done{Object 02)))

vn)))

7.13 Class Instance Creation
[new C] = (0 < C:new(); done(Object 0))
8 Statements — The Mapping

data completion = Done® | Return® | Throw' | Break'

TryFinally(B, G) = new start (new donereturnthrowbreak Py | Pa)

with
P, = B |done.start(Done) |return(v).start(Return v) |throw(v).start(Throw v) |break(v).start(Break v)

Done = done
Return v = return(v)
Throw v = throw(v)
Break v = break(v)

P, = start(c).(G; case ¢ of

)

8.1 Expression Statement

[£;] = (v [E]; done)

8.2 Return Statement

[return E;] = (v « [E]; return(v))

8.3 Sequential Composition Statement

[S15 Sa2;] = ([S1]; [S2])

8.4 Local Variable Declaration

{T n = E; S} = (v [E]; newn (n{v) | [S]))

8.5 Empty Statement

8.6 Labelled Statement
[i: S] = new start (new break ([S] | break(v).start{v)) | P)
with

Zero = done

P = start(v).case v of {Succ w = Break(w)

8.7 If Statement

[if (E) Sy else So] = (b« [E]; (b?[S1] : [S2]))

8.8 While Statement

[while (E) S] = newl (!.(b « [E]; (b?([S]; 1) : done)) | 1)

8.9 Break Statement

[oreak 1] = break([I])

where [I] is a natural number, encoded in datatype nat, equal to the number
of enclosing labelled statements to be skipped. That is, the labelled statement
with label [is the n + 1-th most enclosing labelled statement of this break
statement.

A Java program can be rewritten, preserving semantics, into one without
continue statements or unlabelled break statements.

8.10 Throw Statement

[throw E] = (r « [E]; NotNull(throw{o)))

8.11 Try-Catch Statement

[try S1 catch (T n) So] = new start (new throw ([S1] |throw(o).start{o)) |P)

where

Null = throw(o))

P = start(o).(r < o.dynamic-cast([T]); case r of {Object 0 = newn ((r) | [So])

8.12 Try-Finally Statement

[try S1 finally S3] = TryFinally([S1], [S2])

8.13 Synchronized Statement

[synchronized (E) S] = (r < [E]; NotNull(P1))

where

Nothing = P»
Just n = (n = context.context-identity ? [S] : P»)

)

P, = (x « [o0.lock-owner]; case = of {

P, = o.lock.([o.lock-owner] < Just context.context-identity; < context.lock-locals(); TryFinally([S], G))

G = (<= context.unlock-locals(); [o.lock-owner] «— Nothing; o.lock.done)

8.14 Asynchronous Statement

This statement, which does not exist in Java, can be used to implement Thread.start ().
In Java, Thread.start() is a native method implemented in a C library. By
defining this statement, we can write multithreaded programs without using
native methods or C libraries.

The statement starts a new thread to execute its body and completes nor-
mally without waiting for the new thread to finish. No jump labels are in scope
in S. Local variables are in scope only if they are final. this is in scope. It is a
compile-time error for a return statement to appear in S.

[async S] = NewContext(new done throw [S]) | done

9 Discussion

There are a number of features of Java which are not covered in our current
definition of the semantics. Some of these features, such as operations on primi-
tive values and for loops, are entirely analogous to features we did cover. Oth-
ers, specifically volatile fields, arrays, static fields, static initializers, the wait,
notify, and notifyAll methods of class Object, and string literals, can prob-
ably be added without much difficulty. There are two features, dynamic class
loading and reflection, which would be more difficult to add.

Our semantics does not capture accessibility issues. For example, we do not
restrict channels which correspond to private methods. We do, however, correctly
model the impact of accessibility modifiers on the behavior of programs. For
example, if class D extends class C' and C' and D are in different packages, then
D does not inherit the internal members of C. Also, a method declared in D
never overrides an internal method declared in C.

9.1 Memory Model

Our memory model differs from the memory model specified in the JLS on two
points. Firstly, in our memory model, variables of type long and double are
atomic; in the JLS, they are not. Secondly, we allow the following sequence of
actions by a thread on some variable: Assign-Lock-Use, whereas the JLS does
not. Our semantics is strictly weaker than the JLS, since all programs which
are correct with respect to our semantics are correct with respect to the JLS,
but the converse is not true. Note that if all assignments to shared variables in
a program are inside synchronized blocks, then for this program our memory
model is equivalent to the JLS memory model.

After an assign, a working copy is in the Dirty state. With respect to Lock
actions in the Dirty state, there are two possible design decisions: either we
allow them, or we do not, in which case a Store action must occur before the
Lock action. Neither choice is entirely JLS-compliant. In the latter case, the
sequence Assign-Lock-Assign is disallowed, but this sequence is allowed by the
JLS, so then our semantics would be stronger than the JLS.

When using our semantics for verification of programs, it must not be stronger
than the JLS. When using it for verification of implementations of the Java lan-
guage itself, it must not be weaker than the JLS. We chose the former alternative,
because our goal is program verification.

To be compliant with the JLS, we would need to look forward in time to
see if the next action after the Lock would be an Assign or some other action.
In our semantics, we cannot look forward, since it is an operational semantics.
This is a disadvantage of the operational semantics approach over the declarative
semantics approach.

10 Related Work

As mentioned in the introduction, some work has already been done in the area
of using the m-calculus to define the semantics of object-oriented programming
languages (e.g. [10,7]). However, to our knowledge, this is the first time this
has been applied to a widely-used language, combining inheritance, overriding
(distinguishing public and internal methods), a semantics for unsynchronized
access to shared variables, and many other features.

Pict [5] is a programming language based on the m-calculus, and, like in
this article, the semantics is given by translation to the m-calculus. There is no
explicit notion of inheritance or overriding in Pict, although this functionality
can be implemented on top of Pict easily.

A number of people have defined a semantics of Java (or some subset of it)
in formalisms other than the w-calculus. Two examples are the LOOP project
[2], which uses a weakest precondition-based semantics, and project Bali [9, 4].
Neither project supports concurrency. Another example is [8], which gives a
rather complete semantics of Java using abstract state machines. A notable dif-
ference with our semantics is that these abstract state machines are modularised

along the structure of the Java language itself (imperative features, module fea-
tures, object-oriented features, etc.), whereas in our semantics the process for a
program is modularized along the structure of the program. This might make
reasoning about program modules easier.

References

1.

10.

B. Jacobs and F. Piessens. A w-calculus semantics of Java—the definition. At
http://www.cs.kuleuven.ac.be/ bartj/javapi.

B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering (FASE), number
2029 in LNCS, pages 284-299, 2001.

B. Joy, G. Steele, J. Gosling, and G. Bracha. Java Language Specification (2"
Edition). Addison-Wesley, 2000.

T. Nipkow et al. Project Bali. At http://isabelle.in.tum.de/Bali.

B. B. Pierce and D. N. Turner. A programming language based on the w-calculus.
In G. Plotkin et al., editors, Proof, Language and Interaction: Essays in Honour
of Robin Milner. MIT Press, 2000.

B. Robben, F. Piessens, and W. Joosen. Formalizing Correlate—from practice to
7. In D. Duke and A. Evans, editors, Proceedings of the Second International BCS-
FACS Northern Formal Methods Workshop (NFMW’97), Electronic Workshops in
Computing, pages 1-16, 1997.

D. Sangiorgi and D. Walker. The w-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine—
Definition, Verification, Validation. Springer-Verlag, 2001.

D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concur-
rency and Computation: Practice and Ezperience, 13(13):1173-1214, 2001.
http://isabelle.in.tum.de/Bali/papers/CPEO1.html.

D. Walker. Objects in the m-calculus. Information and Computation, 115:253-271,
1995.

Appendix Notational Conventions

Our semantics uses the pure untyped monadic w-calculus. Type judgments are
informal. In this appendix, we introduce some syntactic sugar.

Unless stated otherwise, all names introduced in the right-hand side of a

definition are assumed not to appear free in the left-hand side.

10.1 Blocking Calls

Let r ¢ fu(wy - - - w, P).

(v<=T(wy -+ -wy); P) =newr (T(wy - - wyr).rv).P)

10.2 Values

Let I be some finite set. Let w be a list of names that contains one name w; for
each j in I. Let one such w be chosen for each finite set I. Let the names in w
not be used anywhere else.

Leti e I.

(1) = new v (v).(lv(w).w;)
(i :)P, = (v)(neww (D(w) | Y w;.P,))
i€l

The syntax (i) P; will be used if no confusion is possible.

10.3 Datatypes
Let data T =C{™ | -+ | Cim.

(Civ1 -+ Uy) = new v (V). (lo(wy - wy) Wi (1« Vp,))

Let wq,...,w, not be used in P,..., P,.

1 1
Chvy U, = Py
case x of ¢ : = new wy -+ - Wy T(W7 ++ - Wp,). E w;i(vy -+ vy,) P
Cpoft---ul = P, i

Mn

Some Datatypes
data nat = Zero | Succ nat

Equality on Pure Datatypes A datatype T; is pure if there is a set S =
{T1,...,T,} of datatypes such that the types of all parameters of all constructors
of all datatypes in S are in S.

Ploy = vo] =newegqy -+ eq, (Q1 | -+ [Qn | (b <=eg;{viv2); P[b]))
with

Qi ='eq;(vivar).R;
We shall define R; by example. Suppose T; = nat.

Zero = T(true)
Zero = case vy of _
Succ wy = T(false)
R; = case vy of _
Succ w; = case vy of Zero = T(false)
! 2 Succ wy = (b < eq;(wiws); 7(b))

10.4 Structures

Let struct T ={ly -+l }.
<{ll ULy ln — ’Un}> = newwv <(U>.(!@<’U1 e U’ﬂ>)
Plv.l;] =v(vy -+ vy).Plvj]
10.5 Variables

A variable z with initial value v is introduced as follows: new x (Z(v).P).

(v = [2]; P) = z(v).(x(v) | P)
Let w ¢ fn(P,v, z).

([#] = v; P) = z(w).(Z(v) | P)

