More about Latin Tableaux and their Embeddings

Bart Demoen Phuong-Lan Nguyen

Report CW668, November 2014
More about Latin Tableaux and their Embeddings

Bart Demoen Phuong-Lan Nguyen

Report CW 668, November 2014

Department of Computer Science, KU Leuven

Abstract

It is shown that any non-solvable Latin Tableau (LT) has a solvable LT-extension with the same shape, and an algorithm computing the minimal such extension is presented. Minimal Latin Square embeddings of solvable Latin Tableaux are established. The results depend partly on the truth of the Wide Partition Conjecture for Latin Tableaux.
More about Latin Tableaux and their Embeddings

Bart Demoen
KU Leuven

Phuong-Lan Nguyen
IMA UCO Angers

Abstract

It is shown that any non-solvable Latin Tableau (LT) has a solvable LT-extension with the same shape. An algorithm computing the minimal such extension is presented. Minimal Latin Square embeddings of classes of solvable Latin Tableaux are established. Embeddings of LT(N) into LS(N+2) are studied in particular. The results depend partly on the truth of the Wide Partition Conjecture for Latin Tableaux.

Contents

1 Introduction 2

2 Preliminaries 2
 2.1 About LT(N) 2
 2.2 The Wide Partition Conjecture: a quick intro 3
 2.3 Using Ryser’s Theorem 6

3 A minimal same-shape wide LT(M) extension for every LT(N) 7

4 The smallest Latin Square embedding of Latin Tableaux 12

5 Latin Tableaux with a 2-gap 13

6 Gaps greater than 2 16
 6.1 The gap for LT[N(i),N-1(N-i-1),i] equals N, N-1 or N-2 16
 6.2 LT(N) with gap N/2 for even N 19
 6.3 LT(N) with gap N/2+1 for even N 19
 6.4 LT(N) with gap 3 ... 20
 6.5 Two more interesting classes of LT(N) 20

7 Conclusion and future work 21
1 Introduction

A theorem from [4] implies that every solution of a solvable LT(N) \((N \geq 4)\) can be embedded in a solution of a Latin Square of size 2N. The same paper contains a proof that this bound is tight for partial Latin Squares. [7] shows that this bound is also tight for the smaller class of LT(N): there exist infinitely many LT(N) that have no embedding in smaller than 2N-sized Latin Squares. Here we want to study the minimal embeddings (i.e. the smallest possible LS allowing an embedding) for particular Latin Tableaux. From time to time we need to rely on the Wide Partition Conjecture (WPC) as stated in [2], instead of being able to prove directly that a partition has a solution. So, in Section 2 after an introduction to Latin Tableaux in Section 2 we give a quick introduction to the WPC, and since we use Ryser’s theorem a lot, this use is also introduced. Amongst others, we present (partial) results related to

1. every (unsolvable) LT(N) is the 0-complement of a solvable LT(M),
2. every unsolvable LT(N) can be extended to a solvable LT(M),
3. extending a non-wide partition in a minimal way to a wide partition,
4. the \textit{gap} in embedding an LT into an LS.

With the \textit{gap} we mean the quantity \(M - N\) where \(M\) is the smallest \(M > N\) for which a particular LT(N) has an LS(M)-embedding.

Issues 1-3 are fully solved; issue 4 is solved for particular classes of LTs. Section 3 shows a minimal same-shape solvable extension for any LT. Section 4 introduces the minimal embedding of (a solution to) an LT(N) in an LS(M): Section 5 deals with the case \(M = N + 2\), while Section 6 deals with \(M > N + 2\).

2 Preliminaries

2.1 About LT(N)

A Latin Tableau can be seen as part of a Latin Square, in which the domain of every cell \((i, j)\) is restricted to \(1...\min(\text{size}(\text{row}_i), \text{size}(\text{col}_j))\), and whose form is a \textit{Young diagram}. As an example, Figure 1 shows a solved Latin Tableau of size 8.

An (empty) Latin Tableau is characterized by the sizes of the subsequent rows, so we denote the Tableau in Figure 1 by \(LT[8, 7, 7, 5, 5, 3, 3, 1]\). We are mainly interested in studying \textit{square} LT’s, so the length of the list of sizes must be equal to the first number in that list. This list forms a partition of the sum of its elements, so we talk freely about \textit{the partition of an LT}. We use LT(N) to denote any Latin Tableau with N the length of the first row. Note that for convenience, we write the numbers of the defining list in descending order, but the order is really immaterial.
2.2 The Wide Partition Conjecture: a quick intro

What follows in this section is a rephrasing of parts of [2] and

Definition 1. A partition (of a natural number I) is a finite non increasing
sequence of natural numbers $\mu_i > 0$ (adding up to I).

Example 1. $[7,4,4,1]$ is a partition (of 16) with length 4

For convenience we use $X(Y)$ as an abbreviation of Y times the number X in

Definition 2. A Young diagram is a visual representation of a partition μ: a
left alignment of rows so that the i^{th} row has μ_i square cells.

Example 2. Figure 2 shows the Young diagram of $[7,4,4,1]$.

For a given (Young diagram of a) partition μ, let us number the rows also
from 1 up to the length of the partition. Then each cell can be denoted by its
coordinates (i,j) as $\text{cell}(i,j)$, for sensible i,j.

Definition 3. The Young-CSP (Constraint Satisfaction Problem) associated
with a partition $\mu = [\mu_1, ..., \mu_l]$ has the following three ingredients:

- $Vars = \{\text{cell}(i,j) \mid \text{cell}(i,j) \in \text{the Young-diagram of } \mu\}$
- $Dom = \{\text{cell}(i,j) \to [1..\mu_i] \mid j \in [1..\mu_i]\}$
- $Constraints = \bigcup_{i=1}^{l}(\{\text{cell}(i,j) \neq \text{cell}(i,j') \forall j, j' : j \neq j'\} \cup
 \{\text{cell}(j,i) \neq \text{cell}(j',i) \forall j, j' : j \neq j'\})$
Another way to phrase the constraints is: in every row and column, the variables must be \textit{all different}.

\textbf{Example 3.} The domains and the constraints of the Young-CSP of $[7,4,4,1]$ are:

- cell(1,1), cell(1,2), cell(1,3), cell(1,4), cell(1,5), cell(1,6), cell(1,7) \rightarrow [1..7]
- cell(2,1), cell(2,2), cell(2,3), cell(2,4) \rightarrow [1..4]
- cell(3,1), cell(3,2), cell(3,3), cell(3,4) \rightarrow [1..4]
- cell(4,1) \rightarrow [1..1]
- \text{all different}([\text{cell}(1,1), \text{cell}(1,2), \text{cell}(1,3), \text{cell}(1,4), \text{cell}(1,5), \text{cell}(1,6), \text{cell}(1,7)])
- \text{all different}([\text{cell}(2,1), \text{cell}(2,2), \text{cell}(2,3), \text{cell}(2,4)])
- \text{all different}([\text{cell}(3,1), \text{cell}(3,2), \text{cell}(3,3), \text{cell}(3,4)])
- \text{all different}([\text{cell}(1,1), \text{cell}(2,1), \text{cell}(3,1), \text{cell}(4,1)])
- \text{all different}([\text{cell}(1,2), \text{cell}(2,2), \text{cell}(3,2)])
- \text{all different}([\text{cell}(1,3), \text{cell}(2,3), \text{cell}(3,3)])
- \text{all different}([\text{cell}(1,4), \text{cell}(2,4), \text{cell}(3,4)])

\square

Not every Young-CSP has a solution, but the example above has:

\begin{center}
\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 1 & 3 & 4 & 7 \\
\hline
3 & 1 & 2 & 5 & 7 & 6 \\
\hline
2 & 5 & 4 & 1 & 3 & 7 \\
\hline
1 & 7 & 6 & 5 & 4 & 3 \\
\hline
\end{array}
\end{center}

\textbf{Figure 3: Solution to the $[7,4,4,1]$-CSP}

\textbf{Definition 4.} The conjugate partition $\text{conj}(\mu)$ of a partition μ is the partition corresponding to the Young diagram obtained by flipping the Young diagram of μ over the main diagonal. If the conjugate of μ equals μ, we say that μ is \textit{self-conjugate}.

\textbf{Example 4.} Figure 4 shows the conjugate Young diagram of $[7,4,4,1]$: the conjugate partition of $[7,4,4,1]$ is $[4,3,3,3,1,1,1]$. One can check that this conjugate Young diagram has no solution.

\square

\textbf{Definition 5.} A partition μ dominates a partition ν, denoted as $\mu \geq \nu$ if $\forall j, \sum_{i=1}^{j} \mu_i \geq \sum_{i=1}^{j} \nu_i$ where any non-existent μ_i or ν_i are taken to be zero.

\textbf{Example 5.} One can check that $[7,4,4,1]$ dominates $[4,3,3,3,1,1,1]$ but not the other way around.

\square

\textbf{Definition 6.} A lower subpartition of a partition $\mu = [\mu_1, \mu_2, ... \mu_l]$ is any partition $[\mu_k, \mu_{k+1}, ... \mu_l]$ for $k \in 1..l$.

4
Figure 4: The Young diagram of the conjugate of \([7,4,4,1]\)

Example 6. The lower subpartitions of \([4,3,3,1,1,1]\) are
\([4,3,3,1,1,1]\), \([3,3,3,1,1,1]\), \([3,3,1,1,1]\), \([3,1,1,1]\), \([1,1,1]\), \([1,1]\), \([1]\]. □

Definition 7. A partition \(\mu\) is **wide** if for every lower subpartition \(\lambda\) of \(\mu\),
\(\lambda \geq \text{conj}(\lambda)\).

The definition above is not the original one, but the one proven to be equivalent in Proposition 3 of [2].

Example 7. \([7,4,4,1]\) is wide, because
\([7, 4, 4, 1] \geq [4, 3, 3, 1, 1, 1]\) ∧
\([4, 4, 1] \geq [3, 2, 2, 2]\) ∧
\([4, 1] \geq [2, 1, 1, 1]\) ∧
\([1] \geq [1]\] □

For a partition \(\mu = [\mu_1, \mu_2, \ldots, \mu_l]\), define \(\text{chop}(\mu) = [\mu_2, \ldots, \mu_l]\).

Alternative definition of wide It is easily checked that the following is an equivalent definition of wideness: a partition \(\lambda\) is **wide** if \(\lambda\) is a singleton, or \(\lambda \geq \text{conj}(\lambda)\) and if \(\text{chop}(\lambda)\) is wide.

Conjecture 1. The **Wide Partition Conjecture** from [2]: A Young-CSP has a solution iff its corresponding partition is wide.

The above is not exactly what [2] states, but it is enough for the purpose of this report. Since we believe the conjecture is true, we use **solvable** and **wide** (almost) as synonyms.

Definition 8. For a partition \(\mu = [\mu_1, \mu_2, \ldots, \mu_l]\), define \(\text{addcol}(\mu) = [\mu_1 + 1, \mu_2 + 1, \ldots, \mu_l + 1]\). On the diagram, this corresponds to adding a full column at the left.

Definition 9. For a partition \(\mu = [\mu_1, \mu_2, \ldots, \mu_l]\), define \(\text{addrow}(\mu) = [\mu_1 + 1, \mu_2 + 1, \ldots, \mu_l + 1]\). On the diagram, this corresponds to adding a full row on top.

Note that \(\text{addrow}\) and \(\text{addcol}\) commute. We denote \(\text{addrow} \circ \text{addcol}\) by \(\text{ext}\).

Definition 10. The **shape** of a partition \(\mu = [\mu_1, \mu_2, \ldots, \mu_l]\) is a sequence of numbers defined as follows:
if \((l = 0) \lor (\mu_1 = \mu_l) \) then \(\text{shape}(\mu) = [] \)
else let \(i \) be smallest \(i \) such that \(\mu_1 \neq \mu_i \), then \(\text{shape}(\mu) = [a_1, b_1 | R] \)
with \(a_1 = (\mu_1 - \mu_i) \) and \(b_1 = \#\{k|\mu_i = \mu_k\} \) and \(R = \text{shape(chop}^{i-1}(\mu)) \)

As an example: the shape of \(\text{LT}[7,4,4,1] \) is \([3, 2, 3, 1]\). The shape of a partition is invariant under addrow and addcol. One can check that the shape of a self-conjugate partition is a palindrome. The shape of an LT captures the ragged edge of the LT.

Definition 11. The Young diagram for an LT(N) can be put in the upper left corner of a square with size \((N + k) \). Deleting from this square the cells belonging to the LT(N) results in the \(k\)-complement of the LT(N).

Clearly, the \(k\)-complement of an LT(N) can be considered as an LT(M). If the \(k\)-complement has a solution, then by shifting/inverting the domains of its cells, it completes a solution of the LT(N) so that together, they form a solution for LS(M). Figure 5 shows this.

![Figure 5](image)

Figure 5: An LT(7) with its 0-complement, and an LT(5) with its 2-complement

Note that in Figure 5, the LT(7) has a solution, but its 0-complement has not. The LT(5) in Figure 5 and its 2-complement both have a solution, as shown in Figure 6. Together they form a solution to LS(7).

![Figure 6](image)

Figure 6: A solution of an LT(5) and its 2-complement: together a solved LS(7)

2.3 Using Ryser’s Theorem

We will use Ryser’s Theorem [8] quite often, so we feel it is worthwhile to review it here and explain how we use it:
Theorem by H. Ryser:
Let $N_R(o_i)$ denote the number of occurrences of o_i in an $r \times s$ latin rectangle R on the symbols $o_1, ..., o_n$, then R may be completed to form a latin square of side n if and only if $\forall i : 1 \leq i \leq n \rightarrow N_R(o_i) \geq r + s - n$.

We use it in the context of completing a solution of an LT(N) to a solution of a Latin Square LS(M), possibly with $M > N$. Consider the 0-complement B of an LT(N) A. B is itself an LT(NC). Fill A with a solution, and suppose we can fill B with the values 1..M so that rows and columns of the square $A \cup B$ contain every value at most once: note that not every value of 1..M needs to be used for that. Clearly, $M \geq N$. If $M = N$ we are done, but if the LT(NC) has no solution, $M > N$ and this means that we have used $(M - N)$ new values.

Let M denote the minimum of occurrence counts of each value in 1..M, i.e. $M = \min_{i=1}^{M} {N_R(i)}$. Then Ryser says that if $M \geq 2N - M$, there is an LS(M)-embedding.

3 A minimal same-shape wide LT(M) extension for every LT(N)

In [7], it was proven\footnote{but not explicitly stated.} that the 0-complement of a solvable LT(N) can be extended to a solvable LT(M) with the same shape. We want the same result but without the solvability condition on the LT(N). In fact, this result was proven already in [2], essentially by making the partition squarish. Here however, we are interested in the minimal solvable extension and an algorithm to construct it.

For a given partition $\mu = [\mu_1, \mu_2, ... \mu_l]$, find the highest i so that $\text{chop}^i(\mu)$ does not dominate its conjugate: we name this index the culprit of μ: $\text{culprit}(\mu)$. If none exists, μ is wide and we define $\text{culprit}(\mu) = 0$.

Lemma 1. Let $\mu = [\mu_1, \mu_2, ... \mu_l]$. If $\text{chop}(\mu)$ is wide, then $\text{addcol}(\mu)$ is wide.

Proof. Proposition 4 from [2] implies that $\text{addcol}(\text{chop}(\mu))$ is wide, so all we need to prove is that $\text{addcol}(\mu)$ dominates its conjugate. Let $\text{conj}(\mu) = \lambda$.

$\text{chop}(\mu)$ dominates its conjugate, so $\sum_{i=2}^{k} \mu_i \geq \sum_{i=1}^{k-1} \lambda_i$ (1)

In particular, for $k=1$, this implies $\mu_2 + 1 \geq \lambda_1$ and since $\mu_1 \geq \mu_2$, and $\lambda_1 = l$ we derive

$\mu_1 + 1 \geq l$. (2)

Adding (1) and (2) yields

$\sum_{i=1}^{k} (\mu_i + 1) \geq (l + \sum_{i=1}^{k-1} \lambda_i)$

which expresses that $\text{addcol}(\mu)$ dominates its conjugate. \qed
From Lemma 1 we can conclude:

Corollary 1. If \(\text{culprit}(\mu) > 0 \) then \(\text{culprit}(\mu) > \text{culprit}(\text{addcol}(\mu)) \), else \(\text{culprit}(\text{addcol}(\mu)) = 0 \).

Lemma 2. Let \(\text{ext}(\mu) = \text{addrow}(\text{addcol}(\mu)) \). If \(\mu \) is self-conjugate and \(\mu \) is wide, \(\text{ext}(\mu) \) dominates its conjugate and is wide.

Proof. From Proposition 4 in [2] we know that \(\text{addcol}(\mu) \) is wide. Since \(\mu \) is self-conjugate, \(\text{ext}(\mu) \) is self-conjugate, so the result follows because a self-conjugate partition dominates its conjugate. \(\square \)

If the WPC is true, then we can conclude at this point that if an LT\((N)\) \(\mu \) is solvable, then \(\text{ext}(\mu) \) is solvable. It would be nice to have a constructive proof independent of the WPC.

Theorem 3.1. If \(\mu \) is self-conjugate and \(\text{addcol}^k(\mu) \) is wide, then \(\text{ext}^k(\mu) \) is wide.

Proof. It is enough to prove that \(\forall i : 0 < i \leq k \ \text{addrow}^i(\text{addcol}^k(\mu)) \) dominates its conjugate. For \(i = k \) this is trivial, because \(\text{ext}^k(\mu) \) is self-conjugate. So, let \(0 < i < k \).

Figure 7 visualizes \(\mu = [\mu_1, \mu_2, \ldots, \mu_l] \), the \(k \) added columns and rows, \(i \), and a \(p \) that is used later. Corollary 1 implies that the smallest \(k \) for which \(\text{addcol}^k(\mu) \) is wide, is strictly smaller than \(l \). For larger \(k \) we can use Lemma 2 so we make the proof for \(k < l \).

The figure makes it easy to see that

\[
\text{addrow}^i(\text{addcol}^k(\mu)) = [(k + l)i, \mu_1 + k, \mu_2 + k, \ldots, \mu_l + k] = [\alpha_1, \ldots, \alpha_{i+l}]
\]

\[
\text{conj}(\text{addrow}^i(\text{addcol}^k(\mu))) = [(i + l)k, \mu_1 + i, \mu_2 + i, \ldots, \mu_l + i] = [\beta_1, \ldots, \beta_{k+l}]
\]

and we must prove that for every partial sum of the first \(p \) elements: \(\sum_{j=1}^{p} \alpha_j \geq \sum_{j=1}^{p} \beta_j \). We break it down in four separate cases:

- **0 < p \leq i:**
 The partial sums are \(\sum_{j=1}^{p} (k + l) \) and \(\sum_{j=1}^{p} (i + l) \). Since \(k > i \), the inequality follows.
\(i < p \leq k: \)

We must prove \(\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-1}(\mu_j + k) \geq \sum_{j=1}^{p}(i+l) \)

Since \(\text{addcol}^{k}(\mu) \) is wide, we know \(\sum_{j=1}^{p-1}(\mu_j + k) \geq \sum_{j=1}^{p-1}l, \) so

\[
\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-1}(\mu_j + k) \geq \sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-1}l
\]

\[
= \sum_{j=1}^{p}l + i \times k \geq \sum_{j=1}^{p}l + i \times p
\]

\[
= \sum_{j=1}^{p}(i+l)
\]

which we needed to prove.

\(k < p \leq i + l: \)

We must prove

\(\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-1}(\mu_j + k) \geq \sum_{j=1}^{k}(i+l) + \sum_{j=1}^{p-k}(\mu_j + i) \)

Add \(\sum_{j=1}^{p-k}(k-i) \) to both sides to obtain (in a reordered form):

\[
\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-k}(k-i) + \sum_{j=p-k+1}^{p-1}(\mu_j + k) + \sum_{j=1}^{p-k}(\mu_j + k)
\]

\[
\geq \sum_{j=1}^{k}(i+l) + \sum_{j=1}^{p-k}(\mu_j + k)
\]

Subtract \(\sum_{j=1}^{p-k}(\mu_j + k) \) from both sides to get

\[
\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-k}(k-i) + \sum_{j=p-k+1}^{p-1}(\mu_j + k) \geq \sum_{j=1}^{k}(i+l)
\]

(3)

Since in \(\text{addcol}^{k}(\mu) \) the partition starting at the \((p-k+1)\)th row dominates its conjugate, we know

\[
\sum_{j=p-k+1}^{p-1}(\mu_j + k) \geq \sum_{j=p-k+1}^{p-1}(l-(p-k+1)+1), \) so starting from the lefthand side of (3), we get

\[
\sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-k}(k-i) + \sum_{j=p-k+1}^{p-1}(\mu_j + k)
\]

\[
\geq \sum_{j=1}^{i}(k+l) + \sum_{j=1}^{p-k}(k-i) + \sum_{j=p-k+1}^{p-1}(l-p+k)
\]

\[
= i \times (k+l) + (k-i) \times (p-k) + (l-p+k) \times (k-i) = k \times (i+l)
\]

\[
= \sum_{j=1}^{k}(i+l)
\]

and the inequality (3) is proven.

\(i + l < p: \)

The partial sum now exhausts \(\alpha \) and there is some of \(\beta \) left because \(i < k \), so it follows immediately.

\(\square \)

Based on the lemmas and theorem, we state three versions of an algorithm that extends a self-conjugate partition to a wide partition with the same shape.
Algorithm 1 Extending a self-conjugate partition to a wide partition

```
function EXTEND_TO_WIDE(µ)
    if culprit(µ) > 0 then
        return extend_to_wide(ext(µ))
    else
        return µ
    end if
end function
```

Algorithm 2 Extending a self-conjugate partition to a wide partition

```
function EXTEND_TO_WIDE(µ)
    k := 0
    while culprit(µ) > 0 do
        µ = addcol(µ)
        k = k + 1
    end while
    return addrow^k(µ)
end function
```

Algorithm 3 Extending a self-conjugate partition to a wide partition: to be called as extend_to_wide(µ, µ)

```
function EXTEND_TO_WIDE(µ, λ)
    if culprit(µ) > 0 then
        return extend_to_wide(addcol(µ), ext(λ))
    else
        return λ
    end if
end function
```
Theorem 3.2. Any of the Algorithms 1, 2 and 3 applied on a self-conjugate partition μ, returns the smallest solvable self-conjugate extension with the same shape.

Proof. This follows from the theorems and the lemmas.

Figure 8 shows the workings of the algorithm.

Figure 8: A non-wide LT (the smaller one) and its extension to a wide LT by performing ext twice.

Corollary 2 answers a question left open in [7]:

Corollary 2. Every LT(N) is the 0-complement of a solvable LT(M)
4 The smallest Latin Square embedding of Latin Tableaux

Talking about an LS-embedding of an LT only makes sense if the LT itself is solvable. So, when discussing an LS-embedding of a particular LT, we either assume or (have to) prove that this LT is solvable. Clearly, if an LT(N) has an embedding in an LS(M), M \geq N, the (M - N)-complement of the LT(N) is a solvable LT. We often show such complement is solvable by using Ryser’s theorem so that we can restrict our attention to the \(N \times N \)-square (of which the LS(N) is a part) within the LS(M).

Consider Figure 9, it shows the smallest possible LT(5) (full lines). The smallest possible 3-complement of an LT(5) cannot be smaller than the LT(8) drawn with dotted lines in the same figure. In between are cells (in bold lines) that might belong to a solvable LT(5) or to its solvable 3-complement. Indeed, a solvable LT(N) must at least have the cells of a DLT(N)\(^2\) or to put it differently: a solvable LT(N) must have all the cells above (and including) its diagonal.

Certainly, the cells with a dot must belong to a 3-complement of an LS(5), but the important thing for us at this point is that there is a stretch of cells, with width equal to two, that could belong to the LS(5) when we want its 3-complement to be solvable, and not more than that. This observation can be generalized readily: an LT(N) that can be embedded in an LS(N+i) (with i > 0) contains the cells of a DLT(N) plus at most the cells in the stretch of width (i - 1).

This observation leads immediately to

Theorem 4.1. An LT(N) with an LS(N+1)-embedding equals DLT(N).

Proof. The stretch has width zero, so the LT(N) equals DLT(N), and the 1-complement equals DLT(N+1). \[\Box \]

\(^2\) defines the class of diagonal LT: DLT(N) = LT[N,N-1,N-2,...,1]; a DLT(N) has exactly one solution.
An experiment We programmed an exhaustive search of all possible gaps for LT(N) for $N = 1..50$: we relied on the WPC, so no constraint solver was needed, so we programmed this in hProlog. The outcome indicated a surprise:

1. For all N and $3 \leq i \leq N$, there is an LT(N) with gap i.
2. There is an LT(N) with gap 2 if and only if $(N + 2)$ is composite.

The surprise was: we had expected that the gap 2 was present for all N. We found a method to construct systematically LT(N) with gap 2 (for composite $(N + 2)$), so the if-part of the second statement has a proof: see Section 5. We have made little progress on the only if part of that statement. The first statement is discussed in Section 6.

5 Latin Tableaux with a 2-gap

We start by showing that for composite $(N+2)$, there is a LT(N) with a gap equal to 2. One alternative (equivalent) way to formulate this is: for composite $(N+2)$ there exists a solvable LT(N) whose 2-complement is solvable. Another way is: for composite $(N+2)$ there exists a solvable LT(N) so that its 0-complement can be filled using the numbers $1..(N+2)$ so that the resulting square of size $N \times N$ fulfills the conditions of Ryser’s theorem to embed it in an LS(N+2). We use the latter formulation.

Definition 12. $LTe(N)$ is a solvable $LT[N, x_2, x_3, ..., x_{N-1}, x_N]$ such that $x_j = (N - j + 1)$ or $x_j = (N - j + 2)$.

In words: an $LTe(N)$ is like DLT(N), but some rows have an extra cell - and it has a solution. A subset of the $LTe(N)$ is defined next:

Definition 13. $LT_d(N)$ is the $LT[N, x_2, x_3, ..., x_{N-1}, x_N]$ such that $x_j = (N - j + 1) + (1 == (j \mod d)) ? 1 : 0$

In words: $LT_d(N)$ is like DLT(N), but with an extra cell added to each row that is a multiple of d. It is easy to check that $LT_d(N)$ is self-conjugate if and only if d divides $(N + 2)$, meaning that $LT_3(5)$ does not make sense as an LT, but $LT_5(13)$ and $LT_4(6)$ do.

Theorem 5.1. If d divides $(N + 2)$, $LT_d(N)$ is solvable.

Proof. Figure 10 shows solutions for $LT_5(13)$ and $LT_3(13)$.

13
To comment on the right side: start by filling out the DLT(N) in its unique way, forgetting for a moment the added cells on line 3, 6, 9 and 12. Then fill out 3 in the added cells. This causes a conflict with 3 other cells: overwrite them with a 6. Now there are 2 cells with a conflict: overwrite them with 9. Now there is one cell with a conflict: overwrite it with 12. The result is a solution of $LT_3(13)$. Note that the construction involved the numbers 3, 6, 9, 12 which are exactly the multiples of 3 smaller than 13. Clearly, this construction can be generalized to all N with non-prime $N + 2$.

Figure 11 shows the same LT(13) as before with their 0-complement filled to satisfy Ryser for the gap equal to two.

Figure 10: A solution for the $LT_5(13)$ and $LT_3(13)$
A number with an arrow means that the corresponding diagonal is filled completely with that number.

Figure 11 shows that the two new numbers (14 and 15) occur 11 times in the 0-complement. The number 15 can occur only 8 times in the main diagonal, but one can recuperate 3 cells in the diagonal for 12. This cascades to the diagonal with 9, and further to the diagonal with 6. Again, this scheme works for any proper divisor of \((N + 2)\).

A formal proof is possible and boring. An example is more informative: Figure 12 shows how to reduce the problem of filling the 0-complement of \(LT_d(13)\) to filling the 0-complement of \(LT_d(10)\), and further to filling the 0-complement of \(LT_d(7)\) and \(LT_d(4)\). The X’s in the figure are merely for indicating the cells that lie to the right of the main diagonal.

Every reduction step reduces the number of X’s by one, so that when there is only one X left, we have a base case, actually an \(LT_d(2d - 2)\) which is easily seen to have a gap equal to two.

About prime\((N+2)\) Empirically, up to \(N=50\) or so, we found out that if \((N + 2)\) is prime, then for a particular LT\((N)\) \(A\), if \(A\) is wide, than its 2-complement is not (unless \(A = DLT(N)\)). We need to prove this only for \(A\) which differ from DLT\((N)\) on the diagonal next to the main diagonal, as for larger differences, the 2-complement cannot be wide. So we need to establish a connection between the wideness of an LT\((N)\) and the wideness of its 2-complement. In one form, we would like to prove

Conjecture 2. If the LT\((N)\) \(A\) is wide, and \((N + 2)\) is prime, then the 2-complement of \(A\) is not wide.

We have been unable to prove this.

We observed (for \(N\) up to 50 or so) that an LT\((N)\) (with composite \((N + 2)\)) has a gap equal to two only if it equals \(LT_d(N)\) with \(d\) a divisor of \((N + 2)\) (we
have no proof of this yet). This indicates that a proof of Conjecture 2 could follow the following path:

- prove that in the 0-complement of an \(LTe(N) \) that satisfies Ryser for a 2-extension, there is a solution in which the first and second diagonal contain only the new values
- the number of cells containing the new values in these diagonals is less than needed, so there must be occurrences of these values in other cells: that can only be in the cells at the intersection of rows/columns in which this value was not present because of the difference between the \(LTe(N) \) and DLT(N): prove that in case \((N + 2)\) is prime, the wrong values are affected

6 Gaps greater than 2

Ideally, we would like to prove the statement for all \(N \), there is an \(LT(N) \) with gap \(i \) for all \(i \in \{3, \ldots, N\} \): this was established empirically for \(N \) up to 50 (or so). We have not worked enough to find a full proof, but examples of \(LT(N) \) with particular gaps are shown in the sections to come.

6.1 The gap for \(LT[N(i), N-1(N-i-1), i] \) equals N, N-1 or N-2

Define \(LT[N,i] = LT[N(i), N-1(N-i-1), i] \), for \(i = 1..N-1 \). Figure 13 shows \(LT[8,3] \): it also indicates a column \(C \) and row \(R \). We number the cells of \(C \) top-to-bottom and \(R \) left-to-right from 1, so the cell \(C^N \) is the same cell as \(R^N \). We are actually only interested in the parts of \(C \) and \(R \) that start at index \(N+i+1 \).

Since an LT can have an embedding in an LS only if it is solvable, the following theorem needs to be proven.

Theorem 6.1. Every \(LTP[N,i] \) has a solution.

Proof. \(\Box \) contains the useful Lemma 2.3.

For any \(n \geq 4 \), there exists an \(n \times n \) latin square, on 1, 2 \(n \), which has symbol \(n \) in each main diagonal cell, and has the entries of the last row in the same order as the last column.

16
This implies that a completion of the following partial LS(7) exists:

\[
\begin{array}{cccccccc}
7 & 1 & 7 & 2 & 7 & 3 & 7 & 4 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 1 \\
\end{array}
\]

and we can use any completion to construct a solution to each LTP[7,i] as in

\[
\begin{array}{cccccccc}
7 & 1 & 7 & 1 & 7 & 1 & 7 & 1 \\
. 7 & 2 & . 7 & 2 & . 7 & 2 & . 7 & 2 \\
. . 7 & 3 & . . 7 & 3 & . . 7 & 3 & . . 3 & 3 \\
. . . 7 & 4 & . . . 7 & 4 & . . . 4 & 4 & 4 \\
. . . . 7 & 5 & 5 & 5 & 5 & 5 \\
. 6 & 6 & 6 & 6 & 6 \\
1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 \\
\end{array}
\]

The dots denote the completed entries: we care little about their exact values. This construction can clearly be generalized to any size \(\geq 4 \).

The 0-complement of LTP[N,i] has a solution only when i equals (N-2) or (N-1), so we start from the 1-complement of LTP[N,i] with \(0 < i < N - 2 \). For convenience, let \(j = N - i \), so \(j > 2 \). That 1-complement is itself equivalent to the LT[\(\mu \)], with \(\mu = [i + j + 1, j + 1, 2(j - 1), 1(i)] \). Let M be the minimal number of columns that we need to add to \(\mu \) to make it wide. Then this LT[\(\mu \)] has an embedding in LS(N+M+1), and likewise the initial LT has.

In [7] it was shown that for \(N \geq 7 \), the smallest embedding of LTP[N,N-3] is in LS(2N). Here we generalize this result.

Theorem 6.2. Let \(N = i + j \). The minimal \(M > N \) for which LTP[N,i] has an LS(M)-embedding, is for

- \(M = 2N - 2 \) if \(i = 1 \)
- \(M = 2N - 1 \) if \(j \geq i > 1 \)
- \(M = 2N \) if \(j < i \)

Proof. Note that for LTP[N,i], \(M \leq 2 \) (see [2,3]): the new variables can occur at most twice.

Suppose that LTP[N,i] has an embedding in LS(2N-d) with \(N > d > 2 \), then because of Ryser's Theorem [5], we need \(N - d \) new values. Each of those must appear at least \(d \) times, so at least 3 times, as \(d > 2 \). But \(M \leq 2 \) so embedding in LS(2N-d) is not possible with \(N > d > 2 \).

Now suppose that LTP[N,i] has an embedding in LS(2N-2). Then the \(N \times N \)-square surrounding the LTP[N,i] must have an assignment (a completion starting from the solution to the LTP[N,i]) with \((N - 2) \) new numbers that each occur at least twice in the square. Since the number of cells in C and R where such
a new number can occur equals \(N - i - 1 \), we have that \(N - 2 \leq N - i - 1 \) or \(i \leq 1 \), so \(i = 1 \). As a result, only when \(i = 1 \) can there exist an embedding of \(\text{LTP}[N,i] \) in \(\text{LS}(2N-2) \) - and it does as we see later.

Suppose that \(\text{LTP}[N,i] \) has an embedding in \(\text{LS}(2N-1) \). Then we need to fit \((N-1) \) new numbers in the cells of \(R \) and \(C \), of which there are \(2j - 1 \), so \(2j - 1 \geq N - 1 \) or \(j \geq i \).

The proof is completely based on Ryser’s Theorem, which in principle defines a construction of the embeddings. For \(\text{LTP}[N,1] \), we give an explicit and short construction.

Construction of an \(\text{LS}(2N-2) \)-embedding for \(\text{LTP}[N,1] \)

The \((N-2)\)-complement of \(\text{LTP}[N,1] \) is the \(\text{LT}[2N-2(N-2),2N-3,(N-1)(N-2),N-2] \): see Figure 14.

![Figure 14: LTP[N,1] and its (N-2)-complement](image)

It is relatively straightforward (but a bit tedious) to prove that the partition \([(2N-2)(N-2),2N-3,(N-1)(N-2),N-2] \) is wide, but we can do better: we construct a solution to the corresponding LT. Note that in Figure 14 this LT consists of the regions A, B and C. B is a square of size \((N-1)\) and A and B just miss one cell from such a square. Fill out in each region the same cyclic \(\text{LS}(N-1) \) solution: this is exemplified in Figure 15. In region B, add \((N-1)\) to each cell. Now there is a cell at the centre that has a value \((2N-2)\) which is too high, but one can replace it by \((N-1)\), to obtain the final solution.

![Figure 15: A solution for the 4-complement of LTP[6,1]](image)
6.2 LT(N) with gap N/2 for even N

Consider LT[2n(n),n(n)]: Figure 16 shows an instance for \(n = 5 \) within the solid line. One can see that LT[2n(n),n(n)] consists of three LS(n) and a solution for each of them is specified by a circle with the numbers to be used. The 0-complement is also an LS(n) and it can be filled out with a solution using the \(n \) new values \([2n+1, 2n+2, \ldots, 3n]\): in the figure, the 4 new values are denoted by \(a \ldots d \). Using Ryser’s Theorem, we see that \(M = n \), so there exists an LS(3n)-embedding of the original LT.

This embedding is minimal, because with \((n-1)\) new values, each occurring \((n+1)\) times (at least), there are not enough cells left in the 0-complement to have the values \((n+1)\cdot 2n\) occur the \((n+1)\)th time as well.

6.3 LT(N) with gap N/2+1 for even N

[5] shows how to construct a (single) diagonal LS for \(N \geq 3 \). This will come in handy for LT[2n(n),(n+1),n(n-1)] of which there is an example in Figure 17 for \(n = 4 \).

In Figure 17, the 0-complement plus the extra cell in the middle, is filled out with a diagonal LS solution. Then the diagonal is replaced by a new value. \(M \) now equals \((n - 1)\) and the number of new values is \((n + 1)\). Ryser’s Theorem guarantees an embedding in LS(3n+1). There is no embedding in an LS(3n): \(M \) and the number of new values should not be smaller than \(n \) in that case, but the 0-complement has only \(n^2 - 1 \) cells.

It feels like this can be generalized to LT(N) with larger and larger gaps.
6.4 LT(N) with gap 3

Figure 18 can be generalized to all odd \(N \geq 5\).

This tableau is \(LT[2n+1,2n,...,n+2,n+1,n-1,n-2,...,2,1]\). The embedding in \(LS(N+3)\) is minimal. Indeed, the 0-complement of this tableau is \(LT[2n,2n-1,...,n+2,n+1,n-1,n-2,...,1]\), and the 2-complement is \(LT[2n+3(2),2n+2,...,n+5,n+4,n+4,n+2,n+1,...,3,2]\). Take the subpartition that starts at \((n+5)\), i.e. \([n+5,n+4,n+4,n+2,n+1,...,3,2]\). The conjugate starts with \([n+5,n+5,...]\) so this subpartition does not dominate its conjugate and the 2-complement is not wide, so it cannot have a solution.

6.5 Two more interesting classes of LT(N)

Below are two more classes of Latin Tableaux that showed promise to make hard claims about the existence of gaps in a certain range, but lack of time prevented us from pursuing this.

- We denote \(LT[N(i),N-1,N-2,...,i]\) by \(DLT(N,i)\). \(DLT(N)\) is equal to \(DLT(N,1)\).
While the 0-complement of DLT(N) is a DLT(N-1), the 0-complement of a DLT(N,i) is a DLT(N-i).

Figure 19: DLT(N,i) = LT[N(i),N-1,N-2,...,i]

This class shows all odd gaps.

- We denote LT[N(i),(N-b)(N-i-b),i(b)] by LTP[N,i,b] - see Figure 20. Clearly LTP[N,i] = LTP[N,i,1], so LTP[N,i,b] generalizes LTP[N,i]. LTP[N,i,b] has a solution only if $b \leq N/2$ and $i \geq b$.

Figure 20: LTP[N,i,b] = LT[N(i),(N-b)(N-i-b),i(b)]

This class shows (among some others) all gaps in $[N/2...N]$.

7 Conclusion and future work

Our initial interest in Latin Tableaux was related to redundant disequalities in the CSP formulation of LT(N). We strayed into the study of embeddings of an LT(N) in a potentially larger Latin Square. The following results were obtained:

1. an algorithm to extend any self-conjugate partition minimally to a wide one with the same shape
2. a proof that there exists a gap 2 LT(N) if $(N + 2)$ is composite and a strong conjecture that the condition is also necessary
3. description of classes of LTs with particular minimal embeddings.

The first result uses full column extension to achieve wideness. It might be interesting to study what one can achieve with extensions that use partial columns. In particular the question how can the shape be adapted minimally to obtain a wide (or solvable) LT seems interesting.
The two other results indicate that there exists a gap $M \text{LT}(N)$ for all $3 \leq M \leq N$, that there exists a gap $2 \text{LT}(N)$ if and only if $(N+2)$ is composite. Moreover, there exists only one gap $1 \text{LT}(N)$ for all N.

However, some of our results depend (for now) on the truth of the Wide Partition Conjecture.

The study of the complexity of the completion decision problem in the context of Latin Tableaux is intriguing: for Latin Squares it is NP-complete (see [3]). For DLT(N), the completion problem is in P (even with small exponent). In some sense, DLT’s are the smallest LTs and LSs are the largest LTs, so we expect that there is a border at which going from DLT to general LT, the decision problem transits from P to NP-complete. Finding characterizations of this border would be nice: in [7], a border between DTL and LS concerning redundancy of sets of disequalities was identified, but a complexity border would be even more interesting. However, at this moment, we don’t even know whether the completion problem for the minimal deviation of DLT(N), namely $LT_d(2d-2)$ is in P.

Several other topics might be worth studying: 3-dimensional Latin Tableaux (as also Latin Cubes have become popular), the minimal amount of clues needed to uniquely complete a partial Latin Tableau, its critical sets, the minimal number of disequality constraints to be violated for filling out a given (unsolvable) LT(N), or alternatively the minimal domain extensions.

References

