
VeriFast: Sound Symbolic Linking in

the Presence of Preprocessing

Gijs Vanspauwen
Bart Jacobs

Report CW638, June 2013

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

VeriFast: Sound Symbolic Linking in

the Presence of Preprocessing

Gijs Vanspauwen
Bart Jacobs

Report CW638, June 2013

Department of Computer Science, KU Leuven

Abstract

Formal verification enables developers to provide safety and se-
curity guarantees about their code. A modular verification approach
supports the verification of different pieces of an application in sep-
aration. VeriFast is an annotation-based verifier for C source code
that implements symbolic linking to support modular verification.
This report describes the process of symbolic linking and the un-
soundness introduced by the C preprocessor. Moreover it contains a
detailed formalization of our solution and a proof of its correctness.

VeriFast: Sound Symbolic Linking in the

Presence of Preprocessing

Gijs Vanspauwen Bart Jacobs

June 10, 2013

Contents

1 Introduction 2

2 Grammar for Tokens 2

3 Auxiliary Definitions 3

4 Definition of Preprocessing 6

5 Symbolic Linking 7
5.1 Input constraint . 8
5.2 Verification process . 8
5.3 Manifest files . 8
5.4 Symbolic linking process . 8
5.5 Recursive context-free type checking 8

5.5.1 Type checking formalized 9
5.5.2 Recursive type checking formalized 9
5.5.3 Equivalence of type checking environments 10
5.5.4 Proof of equivalence . 11

6 Symbolic Linking and Preprocessing 12

7 Preprocessing for Sound Symbolic Linking 15
7.1 Context-free preprocessing . 17
7.2 Parallel preprocessing . 19
7.3 Header guards . 19

7.3.1 Updated recursive type checking 22

8 Equivalence Proof 23
8.1 Main Lemma . 24
8.2 Proof of Theorem 2 . 31

9 Description of Implementation 31

1

1 Introduction

VeriFast1 is a tool that allows developers of C programs to prove certain prop-
erties of their code. To help VeriFast prove these properties, some hints in the
form of annotations must be added to the code and these annotations are just
comments as far as the C compiler is concerned.

Working with the C programming language almost always means working
with the C preprocessor. The preprocessor provides the facilities of header file
inclusion, of macro definition, of macro expansion and of conditional compilation
to the developer. While this functionality is very useful for the developer, the
preprocessor introduces some difficulties when combining it with VeriFast. The
main problem is that soundness of symbolic linking is not guaranteed.

Symbolic linking is a process for deciding whether or not earlier verified
source files can be safely linked together (i.e. earlier proven properties remain
valid). The problem with combining it with preprocessing is that the result
of a header expansion depends upon the defined macros at that point. So a
header file may have a different meaning for the different source files that include
it. A technique that ensures soundness of symbolic linking in the presence of
preprocessing, is presented in this text.

As far as the C preprocessor is concerned, a source file consists of words
and preprocessor directives. This fact is reflected in the definition of a token in
Section 2. Such a token represents a C source file and will serve as input to the
formalized preprocessor. Before formalizing the preprocessor in Section 4, some
auxiliary definitions are given in Section 3. In Section 5 the concept symbolic
linking is explained. Then, the symbolic link soundness problem that manifests
itself when using the preprocessor is explained in Section 6. In Section 7, a
permissive preprocessing technique is formally described under which symbolic
linking remains sound, this technique is based upon the concept of context-free
preprocessing. Finally, in Section 8 a proof of soundness is presented and in
Section 9, the implementation of this technique in VeriFast is described.

2 Grammar for Tokens

A token represents the contents of a C source file as seen by the C preprocessor.
Assume that the following is given:

� W: set of words

� w ∈ W: a word

� w̄ ∈ W∗: a list of words

� H: set of header names

� h ∈ H: a header name

Then the BNF in Definition 1 defines the set of tokens T.

1VeriFast, http://people.cs.kuleuven.be/˜bart.jacobs/verifast/

2

Definition 1.
t ::=

w̄
t t
h
def w w̄
undef w
ifdef w t else t endif

A token can be just a list of words, a sequence of other tokens or a preproces-
sor directive. There are four possible preprocessor directives in this simplified
setting:

� header inclusion - h

� macro definition - def w w̄

� macro removal - undef w

� conditional compilation - ifdef w t else t endif

A C source file is thus represented by a single token which will serve as input
to the formalized preprocessor.

3 Auxiliary Definitions

Some auxiliary definitions that are needed in the rest of this text are given here.
First, some notational conventions concerning functions, lists and multisets are
specified. Secondly, a token t, a header name h and a word w are as in Sec-
tion 2. Then the concept of defined macros is introduced. Defined macros are
represented by a partial function from W to W∗. The fact that macros can-
not have arguments, does not limit the essential capabilities of the formalized
preprocessor:

Every invocation of a macro with arguments can be replaced by
the invocation of a new macro without arguments where the original
arguments are substituted in the body.

The set of header maps is described next. A header map is a function that
associates a token with each possible header name. It will be used by the formal-
ized preprocessor when it needs to expand a header. Then preprocessor trees are
defined. A preprocessor represents the output of the preprocessor, while keep-
ing the include structure of the input token intact. Finally declaration blocks,
verified declaration blocks and verification environments are specified. These
concepts are necessary to describe the process of recursive type checking which
is required by symbolic linking (see Section 5).

3

For any set S:

� ∅ : ∅→ S:
the empty function over S.

� For any set D:

– the singleton function update of an f: S → D is defined as:

f [s := d] = λs′.

{
d if s′ = s
f(s′) otherwise

– the function update of an f: S → D by a g: S → D is defined as:

f ∪ g = λs′.

{
g(s′) if s′ ∈ dom(g)
f(s′) otherwise

– the domain restriction of a function p: S → D for a subset S′ of S:

p|S′ = λs′.

{
p(s′) if s′ ∈ S′

undefined otherwise

– a subfunction p′ of a function p: S → D is defined as:

p′ ⊆ p⇔
{

dom(p′) ⊆ dom(p) ∧
∀s. s ∈ dom(p′)⇒ p′(s) = p(s)

For any set S:

� s̄ ∈ S∗:
a list of elements of S

� []S ∈ S∗:
the empty list of elements of S (the subscript S can be dropped when its meaning
is clear from context)

� [s1, s2, s3, . . .] ∈ S∗:
another list of elements of S

� [s11, s12, . . .][s21, s22, . . .] = [s11, s12, . . . , s21, s22, . . .]:
appending lists

� s̄ = s :: s̄rest:
s is the first element and s̄rest is the tail of the non-empty list s̄

For any set S:

� {|s1, s2, s2, s3|} ∈ NS0 :
a multiset over S

� {|s1, s2, s2|}] {|s3, s3|} = {|s1, s2, s2, s3, s3|}:
union of two multisets over S

4

� t ∈ T: a token

� h ∈ H: a header name

� w ∈ W: a word

� D: set of partial functions from W to W∗

� D = W ⇀ W∗

� d: defined macros

� d ∈ D

� MH : set of header maps

� MH = H → T

� m ∈ MH : a header map

� m ∈ H → T

� τ ∈ Ptrees:
a preprocessor tree, the output of the formalized preprocessor

� τ ::=
[]
w :: τ
(h, τ) :: τ

� Note that by definition a preprocessor tree is a (nested) list, this fact will be
used in definitions that follow.

� DB: set of declaration blocks

� DB = W∗

� b ∈ DB:
a declaration block

5

h1 w1 h2 w2 w3 w4

w5

h1 w6 w7

w5

Figure 1: A graphical representation of a preprocessor tree:
[(h1, [w5]), w1, (h2, [(h1, [w5]), w6, w7]), w2, w3, w4]

� DBtc : set of type checked declaration blocks

� btc ∈ DBtc :
a type checked declaration block

� E: set of type checking environments

� e ∈ E:
a type checking environment

� DBtc and E are the smallest sets for which:

– DBtc = DB× E

– E ∈ NDBtc
0 (multiset over DBtc)

4 Definition of Preprocessing

Given a certain header map m, the formal preprocessor will accept a token t
and a set of defined macros d and it returns a resulting preprocessor tree τ
and an updated set of defined macros d′. This is captured by the judgment
m ` (d, t) ⇓ (d′, τ). The inference rules from Definition 2 describe how such a
judgment can be derived. These rules describe the execution of the preprocessor
using big-step semantics. The judgment actually defines a function from a
specific m, d and t to a resulting d′ and τ as specified in Lemma 1 .

Part of the resulting output when using the inference rules from Definition 2,
is a preprocessor tree. Figure 1 shows such a tree. The actual C preprocessor
just outputs a list of words (called lexical tokens). To transform a preprocessor
tree into a list of words, one can collapse the tree by traversing the tree depth-
first and left-to-right (ignoring the header nodes). For the tree in Figure 1, this
list will be:

[w5, w1, w5, w6, w7, w2, w3 w4]

6

Definition 2.

m ` (d, []) ⇓ (d, [])
P-words-empty

w /∈ dom(d) m ` (d, w̄) ⇓ (d, τ)

m ` (d,w :: w̄) ⇓ (d,w :: τ)
P-words-undefined

w ∈ dom(d) d(w) = w̄1

m ` (d|dom(d) \ {w}, w̄1) ⇓ (d|dom(d) \ {w}, τ1) m ` (d, w̄2) ⇓ (d, τ2)

m ` (d,w :: w̄2) ⇓ (d, τ1 τ2)
P-words-defined

m ` (d, t1) ⇓ (d′, τ1) m ` (d′, t2) ⇓ (d′′, τ2)

m ` (d, t1t2) ⇓ (d′′, τ1 τ2)
P-sequence

m ` (d,m(h)) ⇓ (d′, τ)

m ` (d, h) ⇓ (d′, [(h, τ)])
P-header-exp

m ` (d,def w w̄) ⇓ (d[w := w̄], [])
P-define

m ` (d,undef w) ⇓ (d|dom(d) \ {w}, [])
P-undefine

w ∈ dom(d) m ` (d, t1) ⇓ (d′, τ)

m ` (d, ifdef w t1 else t2 endif) ⇓ (d′, τ)
P-branch-if

w /∈ dom(d) m ` (d, t2) ⇓ (d′, τ)

m ` (d, ifdef w t1 else t2 endif) ⇓ (d′, τ)
P-branch-else

Lemma 1.
∀m, d, d′1, d′2, t, τp1 , τp1 .

(m ` (d, t) ⇓ (d′1, τp1) ∧m ` (d, t) ⇓ (d′2, τp2))⇒
d′1 = d′2 ∧ τp1 = τp2

Proof.
This can straightforwardly be proven by induction on the derivation m ` (d, t) ⇓
(d′1, τp1) and seeing that each possible last rule used in that derivation uniquely
determines the last rule used in the derivation for m ` (d, t) ⇓ (d′2, τp2) (i.e. the
same rule). Since each rule is deterministic for a certain m, d and t (by using
the induction hypothesis in all inductive rules and the fact that m is a function
in rule P-header-exp), we know d′1 = d′2 and τp1 = τp2 .

5 Symbolic Linking

VeriFast is a tool that can check certain properties (e.g. memory safety) of
C programs. Verification by VeriFast requires that each function is annotated
with a contract (i.e. a precondition and a postcondition) written in separation
logic and each function is verified separately by applying a technique called

7

symbolic execution. The verification of a single function is based upon the
contracts of all the functions that are called inside the body of that function. To
support modular verification (e.g. verification of a single source file in isolation),
symbolic linking is implemented in VeriFast. However, symbolic linking can as
well be added to most other annotation-based verifiers (possibly for another
language than C). Adding symbolic linking to a certain verifier, will affect the
verification process in a few places. These will be now discussed in turn.

5.1 Input constraint

The input to the verifier must adhere to the following condition: when in one
source file a declaration is used that is implemented in another file (as is the
case in any real world application), both files must include the same interface
file containing a forward declaration (including necessary verifier annotations)
of that declaration. For C programs this means that two C source files must
include the same header file containing a forward declaration of the construct
implemented in one source file and used in the other. If this constraint is not
fulfilled then the symbolic linking process (see further) will fail.

5.2 Verification process

While verifying a source file and an unimplemented declaration from an inter-
face is used, the corresponding annotations are considered as valid. It is this
assumption that allows the verification of a single part of an application in
isolation, i.e. modular verification.

5.3 Manifest files

During the verification of a source file, the verifier must generate a manifest
file. A manifest file describes the provided (i.e. implemented) and required (i.e.
used but not implemented) declarations in a source file. This description of
a declaration contains not only the name of the declaration, but also the file
where it is declared for the first time (e.g. an included header file that contains
its forward declaration). The verifier can then check later that different verified
source files can be safely linked together by looking at these manifest files - it
is this process that is called symbolic linking.

5.4 Symbolic linking process

During symbolic linking, the corresponding manifest files of the input source
files are compared: if for every required function (description) of some input file
an implementation exists in some other input file, the verifier can conclude that
it is safe to link the input files together. Note that this process does not require
to reverify the source files, looking at the manifest files is sufficient.

5.5 Recursive context-free type checking

An important issue was ignored when describing manifest files and the symbolic
linking process. Interface files can contain auxiliary constructs (inductive data
types, pure functions over these data types, predicates, . . .) for specifying

8

annotations. If an interface uses such auxiliary constructs from another interface
in its annotations, it must be made sure that the first interface file includes the
second. Otherwise the semantics of an inclusion depends upon the context
in which the interface was included and thus its meaning can be different for
different source files that included it. A way to ensure this requirement, is to
type check each (directly or indirectly) included interface recursively in isolation.
If an included interface is type checked correctly in isolation, we know it includes
all the necessary constructs for the semantics of its contents.

To formalize this recursive context-free type checking process, we need the
concepts of a declaration block b ∈ DB (i.e. a list or words), a type checked
declaration block btc ∈ DBtc (i.e. a declaration block together with its type
checking environment) and a type checking environment e ∈ E (i.e. a multiset
of type checked declaration blocks). We will first look at the situation without
recursive type checking before specifying the recursive process. Then we will
present a way to compare both processes.

5.5.1 Type checking formalized

Let the function CP from Definition 3 represent the normal type checking pro-
cedure in the compilation process. The input to CP is a preprocessor tree τ
and a current type checking environment e, and the output is the resulting type
checking environment. This resulting type checking environment is a multiset
containing all the declaration blocks found in the preprocessor tree together
with the environment in which they are type checked. For a one-pass compile
language like C every declaration is type checked given all the previous encoun-
tered declarations. So the rule for CP(b :: τ, e) in Definition 3 correctly includes
the previous current environment as the type checking environment of the en-
countered declaration block b. Note that b is used here to implicitly indicate
the longest match of consecutive words in the tree τ that is not interrupted by
an include. The rule for CP((h, τh) :: τ, e) ensures that the expansion of an
included header is type checked with all the previous declarations in the type
checking environment. The resulting type checking environment is then used as
the new current one while type checking the rest of τ.

Definition 3.

CP([], e) = e
CP(b :: τ, e) = CP(τ, e] {|(b, e)|})

CP((h, τh) :: τ, e) = CP(τ,CP(τh, e))

For a given preprocessor tree τ generated form a specific source file, the
result of CP(τ,∅) thus represents the semantics of that source file as seen by
the C compiler.

5.5.2 Recursive type checking formalized

As mentioned before, to support symbolic linking the type checking procedure
must become recursive and the result of this recursive procedure must be pre-
sented to the verification process. In Definition 4 the function VF is defined,
which represents this recursive type checking. The output of VF is, as for CP,

9

again a type checking environment and represents the semantics of the cor-
responding source file as seen by the verification process. From the rule for
VF((h, τh) :: τ, e) it is clear that a header is type checked in isolation and the
resulting declarations are added to the current type checking environment2.

Definition 4.

VF([], e) = e
VF(b :: τ, e) = VF(τ, e] {|(b, e)|})

VF((h, τh) :: τ, e) = let e′ := VF(τh,∅) in
VF(τ, e] e′)

5.5.3 Equivalence of type checking environments

If we can prove that for the preprocessor tree τ generated from a specific source
file, the semantics of CP (τ,∅) are the same as that of V F (τ,∅), we now that
(if type checking succeeds) the recursive type checking procedure has the same
semantics as normal type checking So we need a way to compare type checking
environments.

Comparing type checking environments can be done using the two mutually
recursive judgments from Definition 5 and Definition 6. In Definition 5 the
(asymmetric) judgment v means equivalence between two type checking envi-
ronments. Clearly two empty environments are equivalent. If two environments
are equivalent, adding a type checked declaration block to each of them where
the type checking environment of the first subsumes the one of the second as
defined in Definition 6, preserves this equivalence.

Definition 5.

∅ v ∅
Env-eq-empty

e1 v e2 e11 � e21

e1] {|(b, e11)|} v e2] {|(b, e21)|} Env-eq-not-empty

Definition 6.

∀ e1, e2. (e1 � e2 ⇔ ∃e3.e1 v e2] e3)

To see why the judgment from Definition 5 indeed implies that equivalent
type checking environments have the same semantics according to the C lan-
guage, note that the C language has the property in Axiom 1.

Axiom 1. If a declaration block can be type checked correctly with two different
sets of visible declaration blocks and if one of the sets of visible blocks is a subset
of the other set, then the declaration block has the same semantics relative to
the two sets of visible blocks.

2If header guards are used to prevent multiple includes of the same file, this technique will
most likely fail. If a guarded header is included for the second time (i.e. nothing is included at
all), the declarations in the header will not be in the type checking environment of the other
header file that included the first. We come back to this in Section 7.

10

5.5.4 Proof of equivalence

We can now try to prove that for any preprocessor tree τ the type checking
environment calculated by CP is equivalent to that calculated by VF. This
ensures that the semantics of recursive type checking are the same as those of
normal type checking. Theorem 1 states this more formally. Of course this can
only be true if both environments can be type checked correctly. The situation
in which this is not true is ignored here. But if it does occur, the implementation
as described in Section 9 must signal an error. To prove Theorem 1, we first
prove Lemma 2 by induction on τ.

Lemma 2.

∀ e1, e2, e3, τ. e1 v e2] e3 ⇒ [CP(τ, e1) v VF(τ, e2)] e3]

Proof.

The only base case for this induction:

� τ = []
For all e, CP([], e) is equal to e and also VF([], e) is equal to e. So if
e1 v e2] e3, then CP([], e1) v VF([], e2)] e3 follows immediately.

There are two inductive cases:

� τ = b :: τr
For all e:

– CP(b :: τr, e) = CP(τr, e] {|(b, e)|})
– VF(b :: τr, e) = VF(τr, e] {|(b, e)|})

If we know e1 v e2] e3, we know that e1 � e2 according to Definition 6.
Then, we can deduce e1]{|(b, e1)|} v e2]{|(b, e2)|}]e3 from Definition 5.
So we know by induction hypothesis that:

– CP(τr, e1] {|(b, e1)|}) v VF(τr, e2] {|(b, e2)|})] e3

Rewriting this with previous equalities gives the necessary environment
equivalence:

– CP(b :: τ, e1) v VF(b :: τ, e2)] e3

� τ = (h, τh) :: τr
For all e:

– CP((h, τh) :: τr, e) = CP(τr,CP(τh, e))

– VF((h, τh) :: τr, e) = VF(τr, e]VF(τh,∅))

If we know e1 v e2] e3, we know that e1 v ∅] [e2] e3] and by induction
hypothesis:

– CP(τh, e1) v VF(τh,∅)] [e2] e3]

which we can rewrite as:

11

– CP(τh, e1) v [e2]VF(τh,∅)]] e3

Again by induction hypothesis the following holds:

– CP(τr,CP(τh, e1)) v VF(τr, e2]VF(τh,∅))] e3

which we can rewrite as the necessary environment equivalence:

– CP((h, τh) :: τr, e1) v VF((h, τh) :: τr, e2)] e3

Theorem 1.

∀ τ. CP(τ,∅) v VF(τ,∅)

Proof. We can prove Theorem 1 by choosing e1, e2 and e3 as ∅ in Lemma 2
This gives us exactly Theorem 1.

6 Symbolic Linking and Preprocessing

There is a problem with the approach presented in Section 5 when the complete
functionality of the C preprocessor is allowed. While the preprocessor defined
in Section 4 is a simplified version of the actual C preprocessor described in the
C11-standard3, it captures the essence of the problem. The problem is illus-
trated by the following example:

Let the tokens t1 and t2 be as follows:

t1 = [w1] h [w4, w5]
t2 = [w1] def w2 [w3] h [w4, w5]

And let H = {h} and:

m(h) = [wa, w2, wb]

Then,

m ` (∅, t1) ⇓ (∅, τ1)
m ` (∅, t2) ⇓ (∅[w2 := [w3]], τ2)

and

τ1 = [w1, (h, [wa, w2, wb]), w4, w5]
τ2 = [w1, (h, [wa, w3, wb]), w4, w5]

The words in the output of the preprocessor for input t1 that are the result
of expanding the header h (using inference rule P-header-exp), are wa w2 wb.

3C11 or formally ISO/IEC 9899:2011,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=57853

12

For t2, these are waw3, wb. The result of the expansion of a header thus depends
upon the set of defined macros right before the expansion takes place. The C
preprocessor also has this property.

If this kind of preprocessing is used by VeriFast before the verification of C
source code, it could lead to wrong conclusions during symbolic linking. To see
this, consider the following scenario:

� The header file a.h, shown in Listing 1, forward declares the function
foo(). The precondition contains the preprocessor symbol BAR, and the
body of that macro determines what is required by this function to fulfill
the postcondition. The postcondition, on the other hand, states that this
function does not go wrong (which means among other things no null
dereferences).

Listing 1: Forward declaration of function foo() in the header file a.h

void foo()

//@ requires BAR;

//@ ensures true;

� The source file a.c, shown in Listing 2, implements the function foo().
Before this function is implemented, the preprocessor symbol BAR is de-
fined as false and the header file a.h is included. By defining BAR as
false, the contract of the forward declaration of function foo() included
from a.h corresponds to the contract of the implementation in a.c. The
precondition of this contract now requires false and thus makes the con-
tract hold trivially. That is the reason that VeriFast will approve the
function foo() during verification, although there is clearly a memory
access violation in its implementation. Verification would not succeed of
course if the function was used somewhere in the file.

Listing 2: Implementation of function foo() in the source file a.c

#define BAR false

#include "A.h"

void foo()

//@ requires false;

//@ ensures true;

{

void **p;

*p = 0;

}

� The source file b.c, shown in Listing 3, makes use of the function foo().
Before the function main() is implemented, the preprocessor symbol BAR
is defined as true and the header file a.h is included. By defining BAR as
true, the contract of the forward declaration of function foo(), included
from a.h, indicates that the function foo() requires and ensures nothing,
but does not contain any errors. So the function main() can safely call
the function foo() in its body.

13

Listing 3: Implementation of function main() in the source file b.c

#define BAR true

#include "A.h"

int main() // : main

//@ requires true;

//@ ensures true;

{

foo();

return 0;

}

� It is clear that both a.c and b.c type check and verify correctly in sepa-
ration, but the function foo() has a different meaning for both files.

� As already mentioned, VeriFast creates a manifest file during the verifica-
tion of a C source file. The manifest file generated for a.c indicates that
the latter file implements the function foo() that was forward declared
in the file a.h. The manifest file generated for b.c, on the other hand,
indicates that the latter file requires the function foo() that was forward
declared in the file a.h. While the symbolic linking process of VeriFast
would conclude that the files can be safely linked together (the process
only looks at function names and header files containing forward declara-
tions, not at contracts), it is not safe to do so: the resulting application
definitely contains a memory access violation.

The problem was shown here for the contract of a function inside a header
file. The same problem holds if macro symbols are used for function names or
function parameters or other parts of declarations. What they have in common
is that to determine the meaning of such a declaration in a header file, the macro
context before the include is important. There are different possible solutions
to circumvent this problem:

� Do not only include the function signatures in the manifest file, but also
the function contracts.

– The manifest file becomes bloated. To specify the contract of a func-
tion, VeriFast allows inductive datatypes, primitive recursive pure
functions over these datatypes and abstract separation logic predi-
cates to be defined and used in the contract. These constructs also
have to be included in the manifest files, together with all the con-
structs on which their definition recursively depends.

� Redo the verification of the source files during symbolic linking

– In many cases this solution is unacceptable (e.g. it deteriorates mod-
ularity) or even impossible (e.g. linking with a library when only the
header files of that library are available and not the source code).

� Limit the capabilities of the preprocessor so that a header always expands
in a safe way.

14

– The modified (context-free) preprocessor does the trick by process-
ing each included header with an empty set of defined macros. By
expanding a header with an empty set of defined macros, a header
include always results in the same result. Thus the inclusion is not
dependent on the context in which the include occurs (i.e. context-
free).

– The context-free preprocessor can then be executed in parallel with
the normal preprocessor and if their outputs diverge, the process
must be stopped (see Section 7). This ensures that a correct execu-
tion (the process is not stopped before completion) of the resulting
preprocessor is context-free and compliant with the normal C pre-
processor

– This is the solution that is presented in the rest of this text.

7 Preprocessing for Sound Symbolic Linking

In this section we will discuss how to limit the capabilities of the C preprocessor
to support sound symbolic linking. First the concept of context-free preprocess-
ing is explained. Then, we described how this technique can be used to create
a preprocessor that ensures sound symbolic linking.

Before defining the context-free and parallel preprocessing process, we need
the auxiliary functions Ih and Iτ . The function Iτ from Definition 7 expects
as input a preprocessor tree τ and creates a set of all the include nodes in τ.
The function Ih from Definition 8 is very similar. It also expects as input a
preprocessor tree τ and creates a set of all header names in τ. Note that we use
a form of overloading and define both functions for a set of include nodes as
input as well. Lemma 3 and Lemma 4 state some properties of these definitions
which we will need later on.

Definition 7.

Iτ([]) = ∅
Iτ(b :: τ) = Iτ(τ)

Iτ((h, τh) :: τ) = {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τ)
and

Iτ(
¯̃
h) =

⋃
h̃∈¯̃
h

Iτ([h̃])

Lemma 3.
∀ τ. Iτ(τ) = Iτ(Iτ(τ))

Proof.
We prove this by performing structural induction on τ.

� τ = []
This means Iτ(Iτ(τ)) = Iτ(Iτ([])) = Iτ(∅) = ∅ = Iτ([]) = Iτ(τ).

� τ = b :: τr
This means Iτ(τ) = Iτ(b :: τr) = Iτ(τr). By induction we have:

15

– Iτ(τr) = Iτ(Iτ(τr))

And so Iτ(Iτ(τ)) = Iτ(Iτ(τr)) = Iτ(τr) = Iτ(τ).

� τ = (h, τh) :: τr
This means Iτ(τ) = Iτ((h, τh) :: τr) = {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr). By
induction we have:

– Iτ(τh) = Iτ(Iτ(τh))

– Iτ(τr) = Iτ(Iτ(τr))

And so:

Iτ(Iτ(τ)) = Iτ({(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr))
= Iτ({(h, τh)}) ∪ Iτ(Iτ(τh)) ∪ Iτ(Iτ(τr))
= Iτ({(h, τh)}) ∪ Iτ(τh) ∪ Iτ(τr)
= {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τh) ∪ Iτ(τr)
= {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr)
= Iτ(τ)

Definition 8.

Ih([]) = ∅
Ih(b :: τ) = Ih(τ)

Ih((h, τh) :: τ) = {h} ∪ Ih(τh) ∪ Ih(τ)
and

Ih(
¯̃
h) =

⋃
h̃∈¯̃
h

Ih([h̃])

Lemma 4.
∀ τ. Ih(τ) = Ih(Iτ(τ))

Proof.
We prove this by performing structural induction on τ.

� τ = []
This means Ih([]) = ∅ = Iτ([]) = Ih(Iτ([])).

� τ = b :: τr
This means Ih(b :: τr) = Ih(τr) and Ih(Iτ(b :: τr)) = Ih(Iτ(τr)). By
induction we have:

– Ih(τr) = Ih(Iτ(τr))

And so Ih(b :: τr) = Ih(Iτ(b :: τr)).

� τ = (h, τh) :: τr
This means Ih((h, τh) :: τr) = {h} ∪ Ih(τh) ∪ Ih(τr) and Ih(Iτ((h, τh) ::
τr)) = Ih({(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr)). By induction we have:

– Ih(τh) = Ih(Iτ(τh))

16

– Ih(τr) = Ih(Iτ(τr))

And so:

Ih(Iτ((h, τh) :: τr)) = Ih({(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr))
= Ih({(h, τh)}) ∪ Ih(Iτ(τh)) ∪ Ih(Iτ(τr))
= Ih({(h, τh)}) ∪ Ih(τh) ∪ Ih(τr)
= {h} ∪ Ih(τh) ∪ Ih(τh) ∪ Ih(τr)
= {h} ∪ Ih(τh) ∪ Ih(τr)
= Ih((h, τh) :: τr)

7.1 Context-free preprocessing

Here, a modified version of the preprocessor will be defined. It allows sound
symbolic linking, but behaves different from the preprocessor from Section 4.
The inference rules for the context-free preprocessor are very similar to those
from Definition 2. In fact, the following reduction rules are the same and are
omitted from Definition 9:

� CFP-word-empty = P-word-empty

� CFP-word-undefined = P-word-undefined

� CFP-word-defined = P-word-defined

� CFP-sequence = P-sequence

� CFP-define = P-define

� CFP-undefine = P-undefine

� CFP-branch-if = P-branch-if

� CFP-branch-else = P-branch-else

The only other inference rule (i.e CFP-header-cf-exp) is shown in Def-
inition 9 again using big-step semantics. As for the normal preprocessor, the
judgment actually defines a function from a specific m, d and t to a resulting d′

and τ as specified in Lemma 5. Given the same header map m, defined macros
d and token t, the output of the context-free preprocessor is very similar to
that of the normal preprocessor. They are not the same however, since the
rule CFP-header-cf-exp is different from the rule P-header-exp. For the
normal preprocessor, the rule P-header-exp performs a recursive call with the
same set of defined macros. For the context-free preprocessor on the other hand,
a recursive call with an empty set of defined macros is performed in the rule
CFP-header-cf-exp. This rule makes sure that a header is always expanded
in the same way as stated in Lemma 7, since earlier defined macros do not influ-
ence the expansion of a header. So the semantics of an included header cannot
differ among include sites and sound symbolic linking is achieved by using this
preprocessor.

17

Definition 9.

m ` (∅,m(h)) ⇓cf (d′, τ)

m ` (d, h) ⇓cf (d ∪ d′, [(h, τ)]) CFP-header-cf-exp

Lemma 5.

∀m, d, d′1, d′2, t, τp1 , τp1 . (m ` (d, t) ⇓cf (d′1, τp1) ∧
m ` (d, t) ⇓cf (d′2, τp2))⇒ d′1 = d′2 ∧ τp1 = τp2

Proof.
Very similar to proof of Lemma 1.

Lemma 6.

∀m, d, d′, t, τcfp. m ` (d, t) ⇓cf (d′, τcfp)⇒
(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧ (h, τ2) ∈ Iτ(τcfp))⇒ τ1 = τ2)

Proof.
It is clear from Definition 7 that the only way to get an include node (h, τh) as
an element of Iτ(τcfp), is that it must be a node in τcfp. But then, the only
way to get that include node (h, τh) somewhere in τcfp, is to use the conclusion
of rule CFP-header-cf-exp from Definition 9. Since for all h (assuming m is
fixed), there exists unique d′ and τ such that m ` (∅,m(h)) ⇓ (d′, τ) according
to Lemma 5, the premise of rule CFP-header-cf-exp ensures that forall τ1
and τ2 such that (h, τ1) ∈ Iτ(τcfp) ∧ (h, τ2) ∈ Iτ(τcfp) it must be true that
τ1 = τ2.

Lemma 7.

∀m, d, d′, t, τcfp. m ` (d, t) ⇓cf (d′, τcfp)⇒
(∀h, τh. (h, τh) ∈ Iτ(τcfp)⇒ (h, τh) /∈ Iτ(τh))

Proof.
For the sake of contradiction assume that for a given derivation m ` (d, t) ⇓cf
(d′, τcfp), there exists a header node (h, τh) in the tree τcfp (i.e. (h, τh) ∈
Iτ(τcfp)) such that (h, τh) ∈ Iτ(τh). This means that there is a path in the tree
τcfp from node (h, τh) to another node (h, τh). But since τh = τh there is an
infinite path containing infinite many (h, τh) nodes. This contradicts with the
finite derivation of m ` (d, t) ⇓cf (d′, τcfp).

18

7.2 Parallel preprocessing

Up until now we have described two different forms of preprocessing: normal
preprocessing and context-free preprocessing. Normal preprocessing is what we
want because it conforms to the C preprocessor, but we also want context-free
preprocessing because it supports sound symbolic linking. The solution to this
apparently contradictory problem is to run both preprocessors in parallel and
fail if they do not agree on a certain input.

7.3 Header guards

Care must be taken with the inclusion of headers files. Since the inference rule
CPF-header-exp-rec, calls the preprocessor recursively with an empty set of
defined macros, the macro guarding a header file is never defined at that point
during preprocessing. Thus the second time a guarded header is included, it is
expanded anyway by the context-free preprocessor. The normal preprocessor
will not expand the second include of that guarded header. So, the parallel
preprocessing technique described in Subsection 7.2 will fail here.

To make parallel preprocessing succeed for guarded headers, the secondary
occurrences of header includes during context-free preprocessing must be ig-
nored when checking if then normal and the context-free preprocessor agree on
a certain input. This is safe to do, since the context-free preprocessor always
expands a header to the same parse tree (see Lemma 6).

Lets now formalize the parallel preprocessing process that supports guarded
headers. For this we need the function RSO which removes the secondary occur-
rences of header includes from a given preprocessor tree. This function is fairly
straightforward specified in Definition 10 where the set h̄ is used to keep track
of already encountered headers. Lemma 8 states a property of the function RSO
that will be necessary later on.

Definition 10.

RSO([], h̄) = []
RSO(b :: τ, h̄) = b :: RSO(τ, h̄)

RSO((h, τh) :: τ, h̄) = (h, []) :: RSO(τ, h̄) (if h ∈ h̄)
RSO((h, τh) :: τ, h̄) = let τh′ = RSO(τh, h̄ ∪ {h}) in (if h /∈ h̄)

(h, τh′) :: RSO(τ, h̄ ∪ Ih([(h, τh′)]))

Lemma 8.

∀ ¯̃
h, τ.

{
¯̃
h = Iτ(

¯̃
h) ∧

(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τ) ∧ (h, τ2) ∈ Iτ(τ) ∪ ¯̃
h)⇒ τ1 = τ2)

⇒ Ih(
¯̃
h) ∪ Ih(RSO(τ, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(τ)

Proof.
We prove this by performing structural induction on τ.

19

� τ = []

This means RSO(τ, Ih(
¯̃
h)) = RSO([], Ih(

¯̃
h)) = [] = τ and so definitely:

Ih(
¯̃
h) ∪ Ih(RSO(τ, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(RSO([], Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih([])

= Ih(
¯̃
h) ∪ Ih(τ)

� τ = b :: τr

This means RSO(τ, Ih(
¯̃
h)) = RSO(b :: τr, Ih(

¯̃
h)) = b :: RSO(τr, Ih(

¯̃
h)).

Since we have:

–
¯̃
h = Iτ(

¯̃
h)

(assumption)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈ Iτ(τr) ∪ ¯̃
h)⇒ τ1 = τ2

(strengthening of premise of assumption)

we know by induction

Ih(
¯̃
h) ∪ Ih(RSO(τr, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(τr) (1)

and so we have:

Ih(
¯̃
h) ∪ Ih(RSO(τ, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(RSO(b :: τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih(b :: RSO(τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih(RSO(τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih(τr)

(using Equation 1)

= Ih(
¯̃
h) ∪ Ih(b :: τr)

= Ih(
¯̃
h) ∪ Ih(τ)

� τ = (h, τh) :: τr and (h, τh) ∈ Iτ(
¯̃
h)

This means h ∈ Ih(
¯̃
h) and so RSO(τ, Ih(

¯̃
h)) = RSO((h, τh) :: τr, Ih(

¯̃
h)) =

(h, []) :: RSO(τr, Ih(
¯̃
h)). Since we have:

–
¯̃
h = Iτ(

¯̃
h)

(assumption)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈ Iτ(τr) ∪ ¯̃
h)⇒ τ1 = τ2

(strengthening of premise of assumption)

we know by induction:

Ih(
¯̃
h) ∪ Ih(RSO(τr, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(τr) (2)

20

and so finally:

Ih(
¯̃
h) ∪ Ih(RSO(τ, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(RSO((h, τh) :: τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih((h, []) :: RSO(τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ {h} ∪ Ih(RSO(τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ {h} ∪ Ih(τr)

(using Equation 2)

= Ih(
¯̃
h) ∪ {h} ∪ Ih(τh) ∪ Ih(τr)

(since (h, τh) ∈ ¯̃
h and

¯̃
h = Iτ(

¯̃
h),

we know Iτ(τh) ⊆ Iτ(
¯̃
h) and so

Ih(τh) ⊆ Ih(
¯̃
h))

= Ih(
¯̃
h) ∪ Ih((h, τh) :: τr)

= Ih(
¯̃
h) ∪ Ih(τ)

� τ = (h, τh) :: τr and (h, τh) /∈ Iτ(
¯̃
h)

For the sake of contradiction, suppose h ∈ Ih(
¯̃
h) or equivalently h ∈ ¯̃

h.

This would mean that there exists some τ ′h such that (h, τ ′h) ∈ ¯̃
h. Then,

according to

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τ) ∧ (h, τ2) ∈ Iτ(τ) ∪ ¯̃
h)⇒ τ1 = τ2

the equation τh = τ ′h must hold. But then (h, τh) ∈ ¯̃
h which is a contra-

diction. So we know that h /∈ Ih(
¯̃
h).

Let τ ′h = RSO(τh, Ih(
¯̃
h)). We now have RSO(τ, Ih(

¯̃
h)) = RSO((h, τh) ::

τr, Ih(
¯̃
h)) = (h, τ ′h) :: RSO(τr, Ih(

¯̃
h) ∪ Ih([(h, τ ′h)])). Since:

–
¯̃
h = Iτ(

¯̃
h)

(assumption)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τh) ∧ (h, τ2) ∈ Iτ(τh) ∪ ¯̃
h)⇒ τ1 = τ2

(strengthening of premise of assumption)

we know by induction:

Ih(
¯̃
h) ∪ Ih(τ ′h) = Ih(

¯̃
h) ∪ Ih(τh) (3)

We also know:

– Iτ(
¯̃
h ∪ Iτ({(h, τh)})) = Iτ(

¯̃
h) ∪ Iτ(Iτ({(h, τh)})) =

¯̃
h ∪ Iτ({(h, τh)})

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧
(h, τ2) ∈ Iτ(τr) ∪ ¯̃

h ∪ Iτ({(h, τh)}))⇒ τ1 = τ2
(strengthening of premise of assumption)

we have again by induction:

Ih(
¯̃
h ∪ Iτ({(h, τh)})) ∪ Ih(RSO(τr, Ih(

¯̃
h ∪ Iτ({(h, τh)}))) =

Ih(
¯̃
h ∪ Iτ({(h, τh)})) ∪ Ih(τr) (4)

21

Finally we have:

Ih(
¯̃
h) ∪ Ih(RSO(τ, Ih(

¯̃
h))) = Ih(

¯̃
h) ∪ Ih(RSO((h, τh) :: τr, Ih(

¯̃
h)))

= Ih(
¯̃
h) ∪ Ih((h, τ ′h) ::

RSO(τr, Ih(
¯̃
h) ∪ Ih([(h, τ ′h)])))

= Ih(
¯̃
h) ∪ {h} ∪ Ih(τ ′h) ∪
Ih(RSO(τr, Ih(

¯̃
h) ∪ Ih([(h, τ ′h)])))

= Ih(
¯̃
h) ∪ {h} ∪ Ih(τh) ∪
Ih(RSO(τr, Ih(

¯̃
h) ∪ Ih([(h, τh)])))

(using Equation 3)

= Ih(
¯̃
h) ∪ Ih([(h, τh)]) ∪
Ih(RSO(τr, Ih(

¯̃
h) ∪ Ih([(h, τh)])))

= Ih(
¯̃
h) ∪ Ih([(h, τh)]) ∪ Ih(τr)

(using Equation 4 and the fact that
Ih([(h, τh)]) = Ih(Iτ([(h, τh)])) holds)

= Ih(
¯̃
h) ∪ Ih((h, τh) :: τr)

= Ih(
¯̃
h) ∪ Ih(τ)

Let the judgment m, t I τp, τcfp as defined in Definition 11 indicate that
parallel preprocessing succeeded and produced the normal preprocessor tree τp
and the context-free preprocessor tree τcfp for a specific token t and header map
m (and an empty set of defined macros). So the implementation of the parallel
preprocessing technique (see Section 9) must ensure that m, t I τp, τcfp holds.

Definition 11.

∀m, t, τp, τcfp. m, t I τp, τcfp ⇔ ∃ dp, dcfp.





m ` (∅, t) ⇓ (dp, τp) ∧
m ` (∅, t) ⇓cf (dcfp, τcfp) ∧
τp = RSO(τcfp,∅)

7.3.1 Updated recursive type checking

As mentioned before, to support symbolic linking the type checking procedure
must be recursive and the result of this recursive procedure must be presented
to the verification process. But now the type checking process must be modified
to account for guarded headers.

The function VFs represents the updated recursive type checking process
which expects a context-free preprocessor tree as input. The output of VFs
is, as for VF, again a type checking environment and represents the semantics
of the corresponding source file as seen by the verification process. Besides
a context-free preprocessor tree τ and a direct type checking environment ed,

the function VFs also expects a set of transitive encountered header names
¯̃
ht.

In this map the first occurrences of included headers and all transitive include
nodes in the included tree are remembered so they can be looked up later on.

This is clear from the rule for VFs(h̃ :: τ,
¯̃
ht, ed) in Definition 12.

22

The rule for VFs(b :: τ,
¯̃
ht, ed) does all the work to get the correct recursive

type checking environment. Note the subscript d in ed in this rule. This means
that ed is the direct type checking environment, i.e. it only contains declarations
directly declared in the current expansion (or the initial source file). The let

expression in the rule for VFs(b :: τ,
¯̃
ht, ed) then calculates the transitive type

checking environment e using the auxiliary function MH from Definition 13.
From this definition it follows that e contains, besides the type checked declara-

tions in ed, all the declarations occurring in the header nodes in
¯̃
ht, where each

header node is type checked with an empty set of included header nodes and an
empty type checking environment. This transitive environment e is then used
to type check b and the resulting type checked declaration block is added to the
current type checking environment before the rest of the tree is processed.

Definition 12.

VFs([],
¯̃
ht, ed) = ed

VFs(b :: τ,
¯̃
ht, ed) = let e := ed]MH(

¯̃
ht) in

VFs(τ,
¯̃
ht, ed] {|(b, e)|})

VFs(h̃ :: τ,
¯̃
ht, ed) = VFs(τ,

¯̃
ht ∪ Iτ([h̃]), ed)

Definition 13.

MH(
¯̃
h) =

⊎
(h,τ)∈¯̃

h
VFs(τ,∅,∅)

Similar as in Subsection 5.4, we can now try to prove that for the two
preprocessor trees τp and τcfp (if parallel preprocessing succeeded) the type
checking environment calculated by CP is equivalent to that calculated by VFs.
Since this proof is somewhat more complicated and thus more elaborate, it is
covered in the next section.

8 Equivalence Proof

We will now prove that for any outputted preprocessor tree τ the type checking
environment calculated by CP is equivalent to that calculated by VFs. This
ensures that the semantics of recursive type checking are the same as those of
normal type checking if parallel preprocessing is used. Theorem 2 states this
more formally.

Theorem 2.

∀m, t, τp, τcfp. m, t I τp, τcfp ⇒ CP(τp,∅) v VFs(τcfp,∅,∅)]MH(Iτ(τcfp))

As in Subsection 5.5, we need some auxiliary lemmas to prove Theorem 2.
The lemmas will now be proven in turn.

23

8.1 Main Lemma

Lemma 9.

∀τp, τcfp, eg, ed, eo, ¯̃ht, ¯̃ho.





¯̃
ht = Iτ(

¯̃
ht) ∧

¯̃
ho = Iτ(

¯̃
ho) ∧

(∀h, τh. (h, τh) ∈ Iτ(τcfp) ⇒ (h, τh) /∈ Iτ(τh)) ∧
(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧

(h, τ2) ∈ Iτ(τcfp) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2) ∧
τp = RSO(τcfp, Ih(

¯̃
ht ∪ ¯̃

ho)) ∧
eg v ed]MH(

¯̃
ht ∪ ¯̃

ho)] eo

⇒ CP(τp, eg) v VFs(τcfp,
¯̃
ht, ed)]MH(

¯̃
ht∪ ¯̃

ho∪ Iτ(τcfp))]eo

Proof.
We prove Lemma 9 by performing structural induction on τcfp.

The only base case for this induction:

� τcfp = []

From τp = RSO([], Ih(
¯̃
ht ∪ ¯̃

ho)) = [], it follows that:

CP(τp, eg) = CP([], eg)
= eg

VFs(τcfp,
¯̃
ht, ed) = VFs([],

¯̃
ht, ed)

= ed

Since eg v ed]MH(
¯̃
ht∪ ¯̃

ho)]eo is given and we know Iτ([]) = ∅ according
to Definition 7,

CP(τp, eg) v VFs(τcfp,
¯̃
ht, ed)]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(τcfp))] eo

follows immediately.

There are four inductive cases (the case for τcfp = (h, τh) :: τr is split into
three subcases):

� τcfp = b :: τr

Let τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)), then τp = RSO(b :: τr, Ih(
¯̃
ht ∪ ¯̃

ho)) = b ::

RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)) = b :: τ ′r, so we have:

CP(τp, eg) = CP(b :: τ ′r, eg)
= CP(τ ′r, eg] {|(b, eg)|})

VFs(τcfp,
¯̃
ht, ed) = VFs(b :: τr,

¯̃
ht, ed)

= VFs(τr,
¯̃
ht, ed] {|(b, ed]MH(

¯̃
ht))|})

(5)

and we need to prove:

CP(τp, eg) v VFs(b :: τr,
¯̃
ht, ed)]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(b :: τr))] eo (6)

24

Since eg v ed] MH(
¯̃
ht ∪ ¯̃

ho)] eo is given, and it is clear from Defini-

tion 13 that MH(
¯̃
ht ∪ ¯̃

ho) = MH(
¯̃
ht)]MH(

¯̃
ho \ ¯̃

ht), we know according to
Definition 5 and Definition 6:

eg] {|(b, eg)|} v ed]MH(
¯̃
ht ∪ ¯̃

ho)] eo] {|(b, ed]MH(
¯̃
ht))|}

We now have collected the following facts:

–
¯̃
ht = Iτ(

¯̃
ht) (assumption)

–
¯̃
ho = Iτ(

¯̃
ho) (assumption)

– ∀h, τh. (h, τh) ∈ Iτ(τr) ⇒ (h, τh) /∈ Iτ(τh)
(from assumption since Iτ(b :: τr) = Iτ(τr) according to Definition 8)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈ Iτ(τr) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2
(same as previous argument)

– τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho))

– eg] {|(b, eg)|} v ed]MH(
¯̃
ht ∪ ¯̃

ho)] eo] {|(b, ed]MH(
¯̃
ht))|}

so after applying the induction hypothesis we get:

CP(τ ′r, eg] {|(b, eg)|}) v

VFs(τr,
¯̃
ht, ed] {|(b, ed]MH(

¯̃
ht))|})]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(τr))] eo
which we can rewrite to the required environment equivalence relationship
(Equation 6) since Iτ(b :: τr) = Iτ(τr) according to Definition 8 and by
using Equation 5:

CP(τp, eg) v VFs(b :: τr,
¯̃
ht, ed)]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(b :: τr))] eo

� τcfp = (h, τh) :: τr and (h, τh) ∈ ¯̃
ht

From the assumption
¯̃
ht = Iτ(

¯̃
ht) it now follows that (h, τh) ∈ Iτ(

¯̃
ht) and

thus h ∈ Ih(
¯̃
ht) according to Definition 7 and Definition 8. So definitely

h ∈ Ih(
¯̃
ht ∪ ¯̃

ho).

Let τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)), Then τp = RSO((h, τh) :: τr, Ih(
¯̃
ht ∪ ¯̃

ho)) =

(h, []) :: RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)) = (h, []) :: τ ′r and so we have:

CP(τp, eg) = CP((h, []) :: τ ′r, eg)
= CP(τ ′r,CP([], eg))
= CP(τ ′r, eg)

VFs(τcfp,
¯̃
ht, ed) = VFs((h, τh) :: τr,

¯̃
ht, ed)

= VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed)

(7)

and we need to prove:

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]
MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo (8)

We have collected following facts:

25

–
¯̃
ht = Iτ(

¯̃
ht) (assumption)

–
¯̃
ho = Iτ(

¯̃
ho) (assumption)

– ∀h, τh. (h, τh) ∈ Iτ(τr) ⇒ (h, τh) /∈ Iτ(τh)
(by strengthening of premise of assumption since Iτ((h, τh) :: τr) =
{h} ∪ Iτ(τh) ∪ Iτ(τr) according to Definition 8)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈ Iτ(τr) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2
(same as previous argument)

– τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho))

– eg v ed]MH(
¯̃
ht ∪ ¯̃

ho)] eo (assumption)

so after applying the induction hypothesis we get:

CP(τ ′r, eg) v VFs(τr,
¯̃
ht, ed)]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(τr))] eo (9)

Since (h, τh) ∈ ¯̃
ht and Iτ(

¯̃
ht) =

⋃
h̃∈¯̃
ht

Iτ([h̃]), we know

Iτ([(h, τh)]) ⊆ Iτ(
¯̃
ht)

but then since
¯̃
ht = Iτ(

¯̃
ht), we have Iτ([(h, τh)]) ⊆ ¯̃

ht and thus:

¯̃
ht =

¯̃
ht ∪ Iτ([(h, τh)]) (10)

Since Iτ([(h, τh)]) = {(h, τh)} ∪ Iτ(τh), we now have:

¯̃
ho ∪ ¯̃

ht ∪ Iτ(τr) =
¯̃
ho ∪ ¯̃

ht ∪ Iτ([(h, τh)]) ∪ Iτ(τr)
(using Equation 10)

=
¯̃
ho ∪ ¯̃

ht ∪ {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τr)

=
¯̃
ho ∪ ¯̃

ht ∪ Iτ((h, τh) :: τr)
(using Definition 7)

(11)

Using these two equalities (Equation 10 and Equation 11) we can rewrite
the result of applying the induction hypothesis (Equation 9):

CP(τ ′r, eg) v VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed)]

MH(
¯̃
ht ∪ ¯̃

h0 ∪ Iτ((h, τh) :: τr))] eo
which we can rewrite (using Equation 7) to the required environment
equivalence relationship (Equation 8):

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]

MH(
¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo

� τcfp = (h, τh) :: τr and (h, τh) /∈ ¯̃
ht ∧ (h, τh) ∈ ¯̃

ho

From the assumption
¯̃
ho = Iτ(

¯̃
ho) it now follows that (h, τh) ∈ Iτ(

¯̃
ho) and

thus h ∈ Ih(
¯̃
ho) according to Definition 7 and Definition 8. So definitely

h ∈ Ih(
¯̃
ht ∪ ¯̃

ho).

26

Let τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)), Then τp = RSO((h, τh) :: τr, Ih(
¯̃
ht ∪ ¯̃

ho)) =

(h, []) :: RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho)) = (h, []) :: τ ′r and so we have:

CP(τp, eg) = CP((h, []) :: τ ′r, eg)
= CP(τ ′r,CP([], eg))
= CP(τ ′r, eg)

VFs(τcfp,
¯̃
ht, ed) = VFs((h, τh) :: τr,

¯̃
ht, ed)

= VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed))

(12)

and we need to prove:

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]
MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo (13)

Since (h, τh) ∈ ¯̃
ho and Iτ(

¯̃
ho) =

⋃
h̃∈¯̃
ho

Iτ([h̃]), we know

Iτ([(h, τh)]) ⊆ Iτ(
¯̃
ho)

but then since
¯̃
ho = Iτ(

¯̃
ho), we have Iτ([(h, τh)]) ⊆ ¯̃

ho and thus:

¯̃
ho = Iτ([(h, τh)]) ∪ ¯̃

ho

From this and the fact that Iτ((h, τh) :: τr) = Iτ([(h, τh)])∪ Iτ(τr), we can
deduce the following by strengthening the premise of an assumption:

∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧
(h, τ2) ∈ Iτ(τr) ∪ ¯̃

ht ∪ Iτ([(h, τh)]) ∪ ¯̃
ho)⇒ τ1 = τ2 (14)

Also note that:

Iτ(
¯̃
ht ∪ Iτ([(h, τh)])) = Iτ(

¯̃
ht) ∪ Iτ(Iτ([(h, τh)]))

= Iτ(
¯̃
ht) ∪ Iτ([(h, τh)])
(using Lemma 3)

=
¯̃
ht ∪ Iτ([(h, τh)])

(using that
¯̃
ht = Iτ(

¯̃
ht))

(15)

We now have collected the following facts:

–
¯̃
ht ∪ Iτ([(h, τh)]) = Iτ(

¯̃
ht ∪ Iτ([(h, τh)]))

(see Equation 15)

–
¯̃
ho = Iτ(

¯̃
ho)

(assumption)

– ∀h, τh. (h, τh) ∈ Iτ(τr) ⇒ (h, τh) /∈ Iτ(τh)
(by strengthening of premise of assumption since Iτ((h, τh) :: τr) =
{h} ∪ Iτ(τh) ∪ Iτ(τr) according to Definition 8)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈
Iτ(τr) ∪ ¯̃

ht ∪ Iτ([(h, τh)]) ∪ ¯̃
ho)⇒ τ1 = τ2

(see Equation 14)

27

– τ ′r = RSO(τr, Ih(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho))

(from assumption since
¯̃
ho = Iτ([(h, τh)]) ∪ ¯̃

ho)

– eg v ed]MH(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho)] eo
(from assumption since

¯̃
ho = Iτ([(h, τh)]) ∪ ¯̃

ho)

so after applying the induction hypothesis we get:

CP(τ ′r, eg) v VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed)]

MH(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

h0 ∪ Iτ(τr))] eo
which we can rewrite (using Equation 12 and Definition 7) to the required
environment equivalence relationship (Equation 13):

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]

MH(
¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo

� τcfp = (h, τh) :: τr and (h, τh) /∈ ¯̃
ht ∧ (h, τh) /∈ ¯̃

ho

From the assumptions
¯̃
ht = Iτ(

¯̃
ht) and

¯̃
ho = Iτ(

¯̃
ho) it now follows that

(h, τh) /∈ Iτ(
¯̃
ht) ∪ Iτ(

¯̃
ho) and thus (h, τh) /∈ Iτ(

¯̃
ht ∪ ¯̃

ho) or (h, τh) /∈ Ih(
¯̃
ht ∪

¯̃
ho).

Let τ ′h = RSO(τh, Ih(
¯̃
ht ∪ ¯̃

ho) ∪ {h}) and let τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho) ∪
Ih([(h, τ ′h)])). Then τp = RSO((h, τh) :: τr, Ih(

¯̃
ht ∪ ¯̃

ho)) = (h, τ ′h) :: τ ′r and
so we have:

CP(τp, eg) = CP((h, τ ′h) :: τ ′r, eg)
= CP(τ ′r,CP(τ ′h, eg))

VFs(τcfp,
¯̃
ht, ed) = VFs((h, τh) :: τr,

¯̃
ht, ed)

= VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed))

(16)

and we need to prove:

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]
MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo (17)

Note that from the assumption:

∀h′, τ ′h. (h′, τ ′h) ∈ Iτ(τcfp) ⇒ (h′, τ ′h) /∈ Iτ(τ
′
h)

we know (h, τh) /∈ Iτ(τh), since clearly (h, τh) ∈ Iτ(τcfp). But then, from
the assumption:

∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧ (h, τ2) ∈ Iτ(τcfp) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2

we can conclude that there exists no τ ′h so that (h, τ ′h) ∈ Iτ(τh) and τ ′h 6= τh.
Thus we know that h /∈ Ih(τh) and so:

τ ′h = RSO(τh, Ih(
¯̃
ht ∪ ¯̃

ho) ∪ {h})
= RSO(τh, Ih(

¯̃
ht ∪ ¯̃

ho))
(18)

28

using this last equality and the fact that
¯̃
ht ∪ ¯̃

ho = Iτ(
¯̃
ht) ∪ Iτ(

¯̃
ho) =

Iτ(
¯̃
ht ∪ ¯̃

ho) and using the following fact:

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τh) ∧ (h, τ2) ∈ Iτ(τh) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2
(by strengthening of premise of assumption since Iτ((h, τh) :: τr) =
{h} ∪ Iτ(τh) ∪ Iτ(τr) according to Definition 8)

we can deduce the following using Lemma 8:

Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(τ ′h) = Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(τh)

and so:

Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(τ ′h) = Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(τh)

Ih(
¯̃
ht ∪ ¯̃

ho) ∪ {h} ∪ Ih(τ ′h) = Ih(
¯̃
ht ∪ ¯̃

ho) ∪ {h} ∪ Ih(τh)

Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih([(h, τ ′h)]) = Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih([(h, τh)])
(using Definition 8) (using Definition 8)

Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(Iτ([(h, τ
′
h)])) = Ih(

¯̃
ht ∪ ¯̃

ho) ∪ Ih(Iτ([(h, τh)]))
(using Lemma 4) (using Lemma 4)

Ih(
¯̃
ht ∪ ¯̃

ho ∪ Iτ([(h, τ
′
h)])) = Ih(

¯̃
ht ∪ ¯̃

ho ∪ Iτ([(h, τh)]))

(19)

We now have collected the following facts:

– ∅ = Iτ(∅)
(trivial)

–
¯̃
ht ∪ ¯̃

ho = Iτ(
¯̃
ht) ∪ Iτ(

¯̃
ho) = Iτ(

¯̃
ht ∪ ¯̃

ho)
(from assumptions)

– ∀h′, τ ′h. (h′, τ ′h) ∈ Iτ(τh) ⇒ (h′, τ ′h) /∈ Iτ(τ
′
h)

(by strengthening of premise of assumption since Iτ((h, τh) :: τr) =
{h} ∪ Iτ(τh) ∪ Iτ(τr) according to Definition 8)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τh) ∧ (h, τ2) ∈ Iτ(τh) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2
(same as previous argument)

– τ ′h = RSO(τh, Ih(
¯̃
ht ∪ ¯̃

ho))
(see Equation 18)

– eg v ∅]MH(
¯̃
ht ∪ ¯̃

ho)] ed] eo
(assumption)

so after applying the induction hypothesis we get:

– CP(τ ′h, eg) v VF(τh,∅,∅)]MH(
¯̃
ht ∪ ¯̃

ho ∪ Iτ(τh))] ed] eo
– CP(τ ′h, eg) v ed]VF(τh,∅,∅)]MH(

¯̃
ht ∪ Iτ(τh) ∪ ¯̃

ho)] eo
– CP(τ ′h, eg) v ed]MH({(h, τh)})]MH(

¯̃
ht ∪ Iτ(τh) ∪ ¯̃

ho)] eo
(using Definition 13)

– CP(τ ′h, eg) v ed]MH(
¯̃
ht ∪ {(h, τh)} ∪ Iτ(τh) ∪ ¯̃

ho)] eo
(using Definition 13 again and the previously collected facts: (h, τh) /∈
¯̃
ht, (h, τh) /∈ ¯̃

ho and (h, τh) /∈ Iτ(τh))

– CP(τ ′h, eg) v ed]MH(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho)] eo

29

Before applying the induction hypothesis again, we need among others the
following equation:

τ ′r = RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih([(h, τ ′h)]))

= RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho) ∪ Ih(Iτ([(h, τ
′
h)])))

(using Lemma 4)

= RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho ∪ Iτ([(h, τ
′
h)])))

(using Equation 19)

= RSO(τr, Ih(
¯̃
ht ∪ ¯̃

ho ∪ Iτ([(h, τh)])))

(20)

Also note that:

Iτ(
¯̃
ht ∪ Iτ([(h, τh)])) = Iτ(

¯̃
ht) ∪ Iτ(Iτ([(h, τh)]))

= Iτ(
¯̃
ht) ∪ Iτ([(h, τh)])
(using Lemma 3)

=
¯̃
ht ∪ Iτ([(h, τh)])

(using that
¯̃
ht = Iτ(

¯̃
ht))

(21)

We now have collected the following facts:

–
¯̃
ht ∪ Iτ([(h, τh)]) = Iτ(

¯̃
ht ∪ Iτ([(h, τh)]))

(see Equation 21)

–
¯̃
ho = Iτ(

¯̃
ho)

(assumption)

– ∀h, τh. (h, τh) ∈ Iτ(τr) ⇒ (h, τh) /∈ Iτ(τh)
(by strengthening of premise of assumption since Iτ((h, τh) :: τr) =
{h} ∪ Iτ(τh) ∪ Iτ(τr) according to Definition 8)

– ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τr) ∧ (h, τ2) ∈
Iτ(τr) ∪ ¯̃

ht ∪ Iτ([(h, τh)]) ∪ ¯̃
ho)⇒ τ1 = τ2

(same as previous argument and some rewriting)

– τ ′r = RSO(τr, Ih(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho))
(see Equation 20)

– CP(τ ′h, eg) v ed]MH(
¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho)] eo
so after applying the induction hypothesis again we get:

CP(τ ′r,CP(τ ′h, eg)) v VFs(τr,
¯̃
ht ∪ Iτ([(h, τh)]), ed))]
MH(

¯̃
ht ∪ Iτ([(h, τh)]) ∪ ¯̃

ho ∪ Iτ(τr))] eo

which we can rewrite (using Equation 16 and Definition 7) to the required
environment equivalence relationship (Equation ??):

CP(τp, eg) v VFs((h, τh) :: τr,
¯̃
ht, ed)]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ((h, τh) :: τr))] eo

30

8.2 Proof of Theorem 2

Armed with Lemma 9 it is fairly easy to prove Theorem 2. First, using Axiom 11
we immediately get:

� τp = RSO(τcfp,∅)

Then using Lemma 6 we get:

� ∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧ (h, τ2) ∈ Iτ(τcfp))⇒ τ1 = τ2

and using Lemma 7 we get:

� ∀h, τh. (h, τh) ∈ Iτ(τcfp)⇒ (h, τh) /∈ Iτ(τh)

Lets restate Lemma 9 for our current τp and τcfp, choosing ∅ for eg, ed and

eo, and also choosing
¯̃
ht and

¯̃
ho to be ∅:





∅ = Iτ(∅) ∧
∅ = Iτ(∅) ∧
(∀h, τh. (h, τh) ∈ Iτ(τcfp) ⇒ (h, τh) /∈ Iτ(τh)) ∧
(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧

(h, τ2) ∈ Iτ(τcfp) ∪∅ ∪∅)⇒ τ1 = τ2) ∧
τp = RSO(τcfp, Ih(∅ ∪∅)) ∧
∅ v ∅]MH(∅ ∪∅) ∪∅

⇒ CP(τp,∅) v VFs(τcfp,∅,∅)]MH(∅ ∪∅ ∪ Iτ(τcfp))]∅

Since all the premises are clearly true, we finally get:

� CP(τ,∅) v VFs(τ,∅,∅)]MH(Iτ(τcfp))

9 Description of Implementation

The recursive type checking described in Subsection 5.4 was already present in
VeriFast to support symbolic linking. Actually, that implementation already
did something very similar to the function VFs defined in Subsection 7. To
overcome the problem that occurs when headers are type checked in isolation
and secondary occurrences of guarded headers are removed by the C preproces-
sor, all headers are lexically analyzed, preprocessed, parsed and type checked in
isolation. Only then are the declarations it contains added to the type checking
environment of the file that included the header. The unsoundness introduced
by preprocessing was solved by only allowing header guards and nothing else of
the capabilities of the C preprocessor.

The parallel preprocessing technique from Subsection 7.2 was straightfor-
ward to implement in VeriFast. An implementation of the C preprocessor and
the context-free preprocessor are run in parallel and an error is reported if their
output diverge. If the parallel preprocessor encounters a secondary include, it
ignores this include to make sure that m, t I τp, τcfp (according to Definition 11)
holds.

If a single header is included many times, the function VFs is not very
efficient. For every declaration block that needs the header for type checking

31

its declarations, the function VFs is recursively called for that header through
the function MH. In the actual implementation the result for each header is
remembered, so the next time it is needed, it does not have to be computed
again.

Since the verification process itself did not had to be updated, the necessary
modifications were nicely isolated. Only the preprocessing stage and the type
checking stage of the verifier had to be updated. This advantage makes the
technique presented in this text suitable for implementation in other verifiers.

32

