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Abstract

Procedural textures have significant advantages over image tex-
tures. Procedural textures are compact, are resolution and size in-
dependent, often remove the need for a texture parameterization,
can easily be parameterized and edited, and allow high quality anti-
aliasing. However, creating procedural textures is more difficult than
creating image textures. Creating procedural textures typically in-
volves some sort of programming language or an interactive visual
interface, while image textures can be created by simply taking a
digital photograph. In this paper we present a method for creating
procedural textures by example, designed for isotropic stochastic
textures. From a single uncalibrated photograph of a texture we
compute a small set of parameters that defines a procedural tex-
ture similar to the texture in the photograph. Our method allows
us to replace image textures with similar procedural textures, com-
bining the advantages of procedural textures and image textures.
Our method for creating isotropic stochastic procedural textures by
example therefore has the potential to dramatically improve the tex-
turing and modeling process.

CR Subject Classification : I.3.3, I.3.7.
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Figure 1: Isotropic stochastic procedural textures by example. (a) A photograph of a real-world scene. (b) A photograph of a texture in the
scene. (c) A cropped version of the photograph of the texture. (d) A procedural texture automatically generated from the cropped photograph.
(e) A rendering of a virtual scene textured using several of these procedural textures.

Abstract

Procedural textures have significant advantages over image tex-
tures. Procedural textures are compact, are resolution and size in-
dependent, often remove the need for a texture parameterization,
can easily be parameterized and edited, and allow high quality anti-
aliasing. However, creating procedural textures is more difficult
than creating image textures. Creating procedural textures typically
involves some sort of programming language or an interactive vi-
sual interface, while image textures can be created by simply taking
a digital photograph. In this paper we present a method for creating
procedural textures by example, designed for isotropic stochastic
textures. From a single uncalibrated photograph of a texture we
compute a small set of parameters that defines a procedural tex-
ture similar to the texture in the photograph. Our method allows
us to replace image textures with similar procedural textures, com-
bining the advantages of procedural textures and image textures.
Our method for creating isotropic stochastic procedural textures by
example therefore has the potential to dramatically improve the tex-
turing and modeling process.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: procedural texture, solid texture, texture synthesis,
wavelet noise

1 Introduction

Texturing was introduced by Catmull [1974] as a method for in-
creasing the visual complexity of computer-generated images with-
out adding geometric detail. Texturing quickly became a funda-
mental tool in computer graphics. There are two important types
of textures: image textures consisting of raster data and procedural
textures.

Procedural textures [Ebert et al. 2002] have significant advantages
over image textures. Procedural textures are compact, are resolu-
tion and size independent, and can easily be parameterized; pro-
cedural textures are often solid textures, which remove the need
for a texture parameterization; procedural textures built with band-
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limited noise functions such as wavelet noise [Cook and DeRose
2005] allow high quality anti-aliasing; and procedural textures
leave room for an artist to tweak. Because of these advantages,
procedural textures are increasingly popular in production render-
ing. For example, wavelet noise was recently developed atPixar,
andBlue Sky’s CGIStudiouses a completely procedural approach
to texturing for animated feature films [Eringis 2006].

Creating procedural textures in an intuitive way is one of the biggest
challenges in procedural texturing. Creating procedural textures
typically involves either some sort of programming language, such
as theRenderManshading language [Pixar 2005], or an interactive
visual interface, such asMaPZone[Allegorithmic 2008], accompa-
nied by a deep understanding of procedural texturing. In contrast,
image textures can be created by simply taking a photograph.

In this paper we present a perceptually motivated method for creat-
ing procedural textures by example, designed for isotropic stochas-
tic textures. From a single uncalibrated photograph of a texture we
compute a small set of parameters that defines a procedural tex-
ture similar to the texture in the photograph. Figure 1 shows an
example. Our method consists of an analysis phase and a synthesis
phase. During the analysis phase, the photograph of a texture is an-
alyzed and a small set of parameters for a similar procedural texture
is computed. After the analysis phase, the photograph is discarded.
During the synthesis phase, the procedural texture is evaluated us-
ing the parameters computed during the analysis phase, for example
as part of a rendering program or a GPU shader.

Our method allows us to replace image textures with similar proce-
dural textures, combining the advantages of procedural textures and
image textures. Our method for creating isotropic stochastic proce-
dural textures by example therefore has the potential to dramatically
improve the texturing and modeling process. For example, when an
artist imports an image texture into a 3D modeling software pack-
age, the software package could automatically convert the image
texture into a procedural texture. The artist would not have to worry
about the size and resolution of the texture, the solid version of the
procedural texture removes the need for a texture parameterization,
the software package can produce high quality anti-aliased render-
ings, and the artist can tweak the procedural texture.
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Overview

Section 2 discusses related work, and section 3 introduces multires-
olution wavelet noise. We present our method for creating isotropic
stochastic procedural textures by example in sections 4, 5 and 6.
Our method consist of three building blocks:

1. a spectral method to match the weights in a multiresolution
wavelet noise equation to a photograph (section 4);

2. a method to match the intensity distribution of the photograph
to the procedural texture based on histogram matching (sec-
tion 5); and

3. a method to handle color based on principal component anal-
ysis (section 6).

We summarize our method in section 7. In section 8 we present
results, in section 9 we compare with related work, and in section 10
we conclude.

2 Related Work

Our work is related to procedural texturing, procedural textures by
example, texture synthesis by example, and solid texture modeling.

2.1 Procedural Texturing

Procedural texturing and solid texturing are closely related. Solid
texturing was introduced by Perlin [1985] and Peachy [1985]. At
the same time, Perlin introduced his famous noise function, the ba-
sis for a large variety of procedural textures. Although solid tex-
turing and procedural texturing are closely related, procedural tex-
turing was already known before the introduction of solid textur-
ing [Fournier et al. 1982; Gardner 1984]. Perlin’s noise function
quickly became the most popular noise function, and probably still
is today.
One of the desirable properties of a noise function identified by
Perlin is that it is band limited [Perlin 1985]. However, although
Perlin’s noise function is simple, efficient and elegant, it is not
band limited, and therefore prone to problems with aliasing and
detail loss [Cook and DeRose 2005]. Lewis [1989] proposed two
noise functions similar to Perlin’s noise function with better control
over the noise power spectrum, but they did not gain widespread
use. Perlin [2002] revised his noise function but did not address
the fact that it was not band limited. Inspired by the work of Lewis,
Cook and DeRose [2005] introduced a noise function similar to Per-
lin’s noise function but with a better band limited behavior. Gold-
berg et al. [2008] recently presented a technique that provides high
quality anisotropic filtering for noise textures. Cook and DeRose
and Goldberg et al. showed that procedural textures can be anti-
aliased significantly better than raster data without sacrificing de-
tail. The method for creating procedural textures by example we
present in this work builds on the work of Cook and DeRose.
Next to noise functions similar to Perlin’s noise function, several
other procedural texture basis functions have been proposed, such
as the cellular texture basis function of Worley [1996] and the pro-
cedural object distribution function of Lagae and Dutré [2005], but
these are geared towards very specific classes of procedural tex-
tures.
For an extensive overview of procedural texturing and modeling we
refer to Ebert et al. [2002].

2.2 Procedural Textures by Example

Procedural textures by example is a collection of methods that re-
covers parameters for a procedural texture from an example texture.
Ghazanfarpour and Dischler [1995; 1996] introduced a spectral
method for automatic solid procedural texture generation from a

single or multiple 2D example textures. However, their method is
designed for textures with only a few dominant frequencies. Lefeb-
vre and Poulin [2000] presented a system to extract values for pa-
rameters of structural textures from photographs. Nevertheless,
their method is limited to rectangular tilings and wood. Qin and
Yang [2002] introduced a genetic-based multiresolution parameter
estimation approach to recover the parameter values for a given
procedural texture. However, they did not demonstrate results on
real-world textures. Bourque and Dudek [2004] presented a very
general system that performs a two-phase search over a library of
procedural shaders. Their system can handle several texture classes,
but determining the parameters of a procedural texture using a local
search is less efficient and less accurate than a direct computation.
Procedural textures by example is an important unsolved problem
in texturing.

2.3 Texture Synthesis by Example

Texture synthesis by example is a collection of methods that syn-
thesizes a new texture from an example texture.
Texture synthesis by example includes parametric methods [Heeger
and Bergen 1995; Portilla and Simoncelli 2000], non-parametric
methods [Bonet 1997], including pixel-based methods [Efros and
Leung 1999; Wei and Levoy 2000] and patch-based methods [Efros
and Freeman 2001; Kwatra et al. 2003], and optimization-based
methods [Kwatra et al. 2005].
Texture synthesis by example is usually geared towards 2D image
textures, but some methods also consider solid textures. Heeger
and Bergen [1995] proposed a parametric method for texture syn-
thesis by example that can be used to generate solid textures, and
Kopf et al. [2007] introduced an optimization-based texture synthe-
sis method for solid texture synthesis from 2D examples.
The major difference between methods for texture synthesis by ex-
ample and the method presented in this paper is that our method
constructs a procedural texture while methods for texture synthesis
synthesize raster data.
Our method bears some similarity to parametric methods for tex-
ture synthesis, such as the methods by Heeger and Bergen [1995]
and Portilla and Simoncelli [2000]. However, in contrast to our
method, these methods are not randomly accessible and can there-
fore not be formulated as procedural textures.

2.4 Solid Texture Modeling

Solid texture modeling is a collection of several methods for gener-
ating solid textures.
Dischler and Ghazanfarpour presented a method based on hybrid
analysis for automatic solid texture synthesis [Dischler et al. 1998],
and an interactive system for image based modeling of macrostruc-
tured textures [Dischler and Ghazanfarpour 1999]. Jagnow et al.
[2004] use stereological methods to synthesize 3D solid textures of
aggregate materials of particles from 2D images of existing materi-
als. However, neither method produces procedural textures.
Several previously mentioned methods for procedural textures by
example [Ghazanfarpour and Dischler 1995; Ghazanfarpour and
Dischler 1996] and texture synthesis by example [Heeger and
Bergen 1995; Kopf et al. 2007] can be used for solid texture mod-
eling.
For an extensive overview of solid texturing, including several ap-
proaches to solid texture modeling, we refer to Dischler and Ghaz-
anfarpour [2001].

3 Multiresolution Wavelet Noise

Procedural textures are constructed starting from noise functions
using a process similar to function composition. Therefore, pro-
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Figure 2: Multiresolution wavelet noise. (a, b, c) Three consecutive
wavelet noise bands. (d) Multiresolution wavelet noise composed
from the three noise bands using unit weights. Each figure shows
the noise, the power spectrum of the noise, and the histogram of the
noise (gray) with the expected distribution (red).

cedural textures can be arbitrarily complex. Accordingly, we must
select a specific class of procedural textures. We chose multireso-
lution noise. This class of procedural textures roughly corresponds
to the class of isotropic stochastic textures. This is one of the sim-
plest but also one of the most important texture classes. Isotropic
stochastic textures occur frequently in the real world, and at the
appropriate scale, a lot of real world textures can accurately be ap-
proximated by isotropic stochastic textures.

Multiresolution noiseM (x) is constructed by summing scaled and
weighted versions of a noise bandN (x)

M (x) =
∑

i

wiN
(
2i (x + oi)

)
. (1)

A random offsetoi is added to each noise band to decorrelate the
different noise bands. The weightswi determine the look of the
procedural textureM (x).

Mutiresolution noise works with any type of noise. A desirable
property of the noise function is that it has a narrow bandpass limit
in frequency. We use wavelet noise [Cook and DeRose 2005] in-
stead of Perlin’s noise function [Perlin 2002]. Wavelet noise looks
very similar to Perlin’s noise function but in contrast with Per-
lin’s noise function, wavelet noise is band-limited and has a known
Gaussian intensity distribution. Note that multiresolution noise
based on a band-limited noise function can easily be antialiased
using clamping [Norton et al. 1982].

A wavelet noise bandN (x) is a quadratic B-spline surface. The co-
efficients for the surface are constructed by creating an image filled
with random Gaussian noise, and removing the part that can be rep-
resented at half the resolution. This is done by subtracting from the
image a downsampled and upsampled version of the image, using
appropriate filters.
The expected varianceσ2

N of a wavelet noise band is approxi-
mately 0.265. The expected variance of multiresolution wavelet
noiseM (x) is

σ2
M = σ2

N

∑
i

w2
i . (2)

For more details we refer to Cook and DeRose [2005].

Figure 2 shows three wavelet noise bands and multiresolution
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Figure 3: The radially averaged power spectrum of three consecu-
tive wavelet noise bands.

wavelet noise composed from these noise bands using unit weights.
The histograms of the noise match the corresponding expected
Gaussian intensity distributions well. The color coded power spec-
trum of the multiresolution wavelet noise shows that the wavelet
noise bands are band limited and have a limited overlap in fre-
quency space. This is also illustrated in figure 3 which shows the ra-
dially averaged power spectrum of three consecutive wavelet noise
bands.

4 Matching The Power Spectrum

We construct a procedural texture from a photograph of a texture
starting from the multiresolution noise equation (equation 1) using
wavelet noise bands. The goal is to compute the weightswi of the
multiresolution wavelet noiseM (x) such that the multiresolution
noise matches the texture in the photograph. In this analysis we
assume that the photograph consists of a luminance channel only.

4.1 Theoretical Analysis

We apply the Fourier transformF to both sides of the multiresolu-
tion noise equation. Without loss of generality we can ignore the
offsetsoi. Since the Fourier transform is a linear operator it can be
distributed inside the summation.

F (M (x)) =
∑

i

wiF
(
N

(
2ix

))
. (3)

In order to compute the weightwb we define an operatorSb that
selects the frequency bandb in the Fourier domain

Sb

(
F

(
N

(
2ix

)))
=

{
0 b 6= i

F
(
N

(
2bx

))
b = i

(4)

The operatorSb assumes that the noise band is perfectly band-
limited. We applySb to both sides. SinceSb is a linear operator it
can be distributed inside the summation. Using the definition ofSb

we arrive at

Sb (F (M (x))) = wbF
(
N

(
2bx

))
. (5)

At this point it might seem as if the weightwb can be determined
by dividingSb (F (M (x))) byF

(
N

(
2bx

))
. However, this is not

the case, since only the statistical properties ofN
(
2bx

)
are known.

This approach would work ifM (x) was a multiresolution noise
generated with known noise bands instead of an arbitrary photo-
graph.
Although we cannot assume that the photographM (x) was con-
structed with a known noise bandN

(
2bx

)
, we can exploit the sta-

tistical properties of a wavelet noise band to approximate the weight

3
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Figure 4: Wavelet noise frequency bands. (a) The color-coded sup-
port of each wavelet noise frequency band in the frequency domain.
(b) The number of pixels in each band. The resolution is512×512.

wb. We proceed by taking the power of both sides

|Sb (F (M (x)))|2 = w2
b

∣∣F (
N

(
2bx

))∣∣2 . (6)

To determine the power in the noise bandN
(
2bx

)
we use Parse-

val’s theorem, which states that the power is the same in the spatial
domain and in the frequency domain∣∣F (

N
(
2bx

))∣∣2 =
∣∣N (

2bx
)∣∣2 . (7)

Since a wavelet noise band is a random Gaussian variable with zero
mean and known varianceσ2

N , we can use the computational for-
mula for the variance to determine its expected average power〈

|N (x)|2
〉

= σ2
N ≈ 0.265. (8)

Note that the factor2b can be dropped, since the power in a wavelet
noise band is independent of its scale. The weightwb can now be
approximated by

|wb| ≈
√
|Sb (F (M (x)))|2

σ2
N

. (9)

In this analysis we make two important assumptions. The first is
that the multiresolution wavelet noise is a good model for the pho-
tograph. This is the case for isotropic stochastic textures. The sec-
ond is that expected average power in a wavelet noise band is a
good estimate for the actual power in the wavelet noise band. This
assumption is necessary because we must make abstraction of the
actual noise bands.

Figure 3 shows the radially averaged power spectrum of three con-
secutive wavelet noise bands. This figure also illustrates our model
for the expected power in each noise band. The power in each noise
band, which corresponds to the area below the corresponding curve,
is equal toσ2

N , the area below the corresponding square wave.

4.2 Implementation

We compute the weightswb for a photographM with a power of
two resolution ofN ×N according to equation 9. We compute the
power in each frequency band by interpreting the photographM as
anN ×N matrix, computing the Fast Fourier Transform, iterating
over all elements, sorting the elements into their corresponding fre-
quency band, and accumulating the power in each frequency band.

We number the wavelet noise bands according to their frequency
band. The wavelet noise band with indexb corresponds to a fre-
quency band with discrete frequencies with an absolute horizontal
and vertical frequency component smaller than2b−1 and greater
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Figure 5: Matching power spectrum. (a) A set of randomly gener-
ated weights. (b) An image generated using the weights in (a). (c)
The weights recovered from the image in (b). (d) An image gener-
ated using the weights in (c).

than or equal to2b−2, and is available if the resolution of the pho-
tograph is at least2b × 2b. The band indexb for an element at
position(i, j) in the Fast Fourier Transform of the photographM
is given by

b = max (log2 |fi| , log2 |fj |) + 2, (10)

wherefi and fj are the horizontal and vertical frequency corre-
sponding to element(i, j). For a resolution of512 × 512, the
noise bands in figure 2 have indices9, 8 and7. A photographM
with a power of two resolution ofN ×N contains information for
log2 N − 1 wavelet noise bands. For a resolution of512 × 512,
information for8 frequency bands is available.

We also compute the average luminance during the analysis phase.
Note that the average luminance corresponds to the DC compo-
nent of the Fast Fourier Transform of the photographM . During
the synthesis phase, an approximation of the photographM can be
constructed by evaluating the multiresolution noise equation using
wavelet noise bands and the computed weights, and adding back
the average luminance.

Figure 4 shows the support of the frequency bands and the number
of pixels in each frequency band. The number of pixels for lower
frequency bands becomes increasingly smaller. This implies that
the expected average power becomes a less reliable estimate for the
actual power in the frequency band. Therefore, the weight of lower
frequency bands also becomes increasingly less reliable.

Figure 5 illustrates our method for matching weights. We have gen-
erated a set of random weights, generated an image using these
weights, computed the weights from the generated image using the
method presented in this section, and generated a new image using
the computed weights. Both the weights and the images are simi-
lar, and there is a slightly larger error on weights corresponding to
lower less reliable frequency bands.

5 Matching The Intensity Distribution

Our method for matching the weights in the multiresolution noise
equation to a photograph always constructs a procedural texture
with a Gaussian intensity distribution. This is because the wavelet
noise bands are independent Gaussian random variables (see sec-
tion 3). Therefore it is reasonable to assume that our method for
matching the weights will work better if the intensity distribution
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of the photograph is more Gaussian. Many of our photographs of
stochastic textures already have more or less a Gaussian intensity
distribution, but for photographs for which this is not the case, we
match the intensity distribution of the generated procedural texture
to the photograph using histogram matching. This ensures that our
method also works with photographs with a non-Gaussian intensity
distribution.

Histogram matching is a method to coerce the histogram of an im-
age into a desired histogram shape. This is done by transforming
the pixels in the image with the cumulative histogram of the image,
which results in an equalized histogram, and then transforming the
pixels again with the inverse cumulative desired histogram. His-
togram matching is similar to the transformation method in statis-
tics, that generates a random variable with a known probability den-
sity function by transforming a uniform random variable with the
corresponding inverse cumulative probability density function. For
more information about histogram matching we refer to Gonzalez
and Woods [2008].

In the analysis phase, we coerce the histogram of the photograph
into a Gaussian intensity distribution, with a variance that best fits
the histogram of the photograph. We then apply the weight match-
ing method to the Gaussianized version of the photograph. We store
the histogram that transforms the photograph back to its original
intensity distribution as an additional parameter. In the synthe-
sis phase, evaluating the multiresolution wavelet noise results in
a Gaussian intensity distribution, which we transform back to the
original intensity distribution of the photograph with the stored his-
togram.
Image histograms are traditionally represented using 256 bins.
However, 256 parameters is a lot for a procedural texture. We re-
duce the number of parameters using histogram fitting, which ap-
proximates the discrete histogram with a more compact parameter-
ized representation. There are several possibilities, such as poly-
nomials, exponentials and Gaussians. We use a monotone piece-
wise cubic hermite spline [Fritsch and Carlson 1980] to fit the sub-
sampled inverse cumulative histogram. We choose the subsampled
number of bins roughly the same as the number of weights. For a
photograph with a resolution of512 × 512 we use 10 bins, which
provides good results.
Note that our method for matching the intensity distribution does
not compromise the random accessibility of the procedural texture.
This is because the histogram of the synthesized procedural texture
is derived from the statistical properties of wavelet noise (see sec-
tion 3) rather than computed directly from the intensity values.

Figure 6 illustrates the method for matching the intensity distri-
bution of a photograph to the generated procedural texture. Fig-
ure 6(a) shows a photograph and its histogram. Figure 6(b) and
figure 6(c) show the procedural texture without and with histogram
matching. Note that figure 6(b) has a Gaussian histogram. The
procedural texture constructed with histogram matching is more
similar to the photograph than the procedural texture constructed
without histogram matching. Figure 6(a) also shows the fitted his-
togram.

6 Matching The Color

Our methods for matching the power spectrum and matching the
intensity distribution assume that the photograph consists of only
a luminance channel. In this section we show how to match the
color of the computed procedural texture to the color of the pho-
tograph using principal component analysis. For more information
on principal component analysis, we refer to Jolliffe [2002].
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Figure 6: Matching intensity distribution. (a) A photograph of a
texture. (b,c) A procedural texture generated from the photograph
(b) without histogram matching and (c) with histogram matching.
Histograms are also shown. The fitted histogram is shown in (a)
with lines.

6.1 RGB Color Space

The most straightforward method to match the color of the com-
puted procedural texture to the color of the photograph is to apply
the analysis of the photograph and the synthesis of the procedural
texture to the red, green and blue channel independently.

Figure 7 illustrates the RGB color space method. Figure 7(a) shows
a photograph and figure 7(b) shows the corresponding procedural
texture with an independently generated red, green and blue chan-
nel. However, this method results in unwanted color shifts not
present in the photograph, due to the random offsetsoi in the mul-
tiresolution noise equation (equation 1) that decorrelate the differ-
ent noise bands. For example, in order to produce a yellow color,
the red and the green channel must be correlated, producing large
values simultaneously, but the random offsets prevent this from
happening, producing red and green color shifts instead.
The unwanted color shifts can be eliminated by using the same ran-
dom offsetsoi for the red, green and blue channel. This is illus-
trated in figure 7(c). However, the red, green and blue channel are
now perfectly correlated. This means that this method cannot repro-
duce variation in color that is present in the photograph. Figure 7
shows that the RGB color space method is not able to reproduce the
green-brown colors in the photograph.

6.2 Decorrelated Color Space

The red, green and blue channel in natural images are highly cor-
related [Ruderman et al. 1998; Reinhard et al. 2001]. This means
that a pixel with a large value for the red channel is likely to have
a large value for the green and the blue channel. This is the reason
why treating the red, green and blue channel independently did not
generate the expected result in the previous subsection. However,
treating channels independently is possible in a decorrelated color
space obtained by principal component analysis.

We construct a decorrelated color space for a photographM by
computing the singular value decomposition of the covariance ma-
trix C of the photograph. This is a3 × 3 matrix that measures
the correlation between the random variables corresponding to the
red, green and blue channel. The covariance matrixC is obtained
by multiplying the photographM with its transpose, whereM is a
matrix with a row for the red, green and blue channel and a column
for each pixel, in which the average red, green and blue value was
subtracted from each element. The singular value decomposition
of the covariance matrixC is a matrix decomposition of the form
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Figure 7: Matching color. (a) A photograph of a texture. (b-d)
Procedural textures created from the photograph using (b) an RGB
color space, (c) an RGB color space with the same random offsets
for the red, green and blue channel, and (d) a decorrelated color
space.

C = UDUT , whereU is a3×3 orthogonal matrix andD is a3×3
diagonal matrix whose elements are the singular values ofC. The
3 × 3 transformation matrix that transformsM into a decorrelated
color space isUT . The covariance matrix ofUT M is a diagonal
matrix, indicating perfectly decorrelated random variables.

A similar technique was used by Heeger and Bergen [1995] in the
context of texture synthesis and by Ruderman et al. [1998] to con-
struct a decorrelated color space for natural images.

In the analysis phase, we compute the decorrelated color space,
and store the transformation matrixUT as an additional parameter.
We apply the methods for matching the intensity distribution and
matching the power spectrum independently to each of the decorre-
lated channels. During the synthesis phase, the procedural texture
is evaluated, yielding a value for each of the decorrelated channels.
We convert these values back to the RGB color space using the
transformation matrix.

Figure 7 illustrates the decorrelated color space method. Figure 7(a)
shows a photograph and figure 7(d) shows the corresponding proce-
dural texture in which the channels were independently generated
in the decorrelated color space, using different random offsetsoi

for each of the decorrelated color channels. The decorrelated color
space method is able to reproduce the green-brown colors in the
photograph.

7 Summary

The analysis phase of our method can be summarized as follows:

1. compute the average value of the red, green and blue channel
and subtract it from the corresponding channel;

2. decorrelate the red, green and blue channel (see section 6);

3. (optionally) apply histogram matching to each of the decorre-
lated color channels (see section 5); and

4. compute the weights for each of the decorrelated color chan-
nels (section 4).

The analysis phase is fast, robust and fully automatic. In less than
a second, a512 × 512 photograph is reduced to a handful of pa-
rameters: the average value of the red, green and blue channel (3

parameters), the transformation matrix (9 parameters), the weights
(3 × 8 parameters) and the histogram (3 × 10 parameters). After
the analysis phase, the photograph is discarded.

The synthesis phase of our method can be summarized as follows:

1. evaluate the multiresolution wavelet noise equation (equa-
tion 1) for each of the decorrelated color channels;

2. (optionally) apply histogram matching to each of the decorre-
lated color channels (see section 5);

3. recorrelate the red, green and blue channel (see section 6); and

4. add the average value of the red, green and blue channel back
to the corresponding channel.

The synthesis phase uses the parameters generated during the anal-
ysis phase, and corresponds to a true procedural texture with all the
previously mentioned advantages.
The procedural texture can efficiently be evaluated. A single eval-
uation of the procedural texture corresponds to a single multires-
olution wavelet noise evaluation for each of the three channels, a
single spline lookup for each of the three channels to match the in-
tensity distribution, and a single matrix multiplication to recorrelate
the three channels.

8 Results

We have constructed a wide variety of procedural textures using our
method. Figure 1 and figure 8 show several successful examples of
procedural textures created with our method. Each example shows
a photograph of a real-world scene, a photograph of a texture in the
scene, a cropped version of the photograph of the texture, a proce-
dural texture automatically generated from the cropped photograph,
and a rendering of a virtual scene textured using the procedural tex-
ture. Figure 9 and figure 10 show more examples. The photograph
with context and the photograph of the texture are uncalibrated pho-
tographs taken with an inexpensive digital camera. Note that the
color of the texture in the context photograph and in the photograph
of the texture can be different due to automatic white balancing.

Our method constructs a procedural texture rather than an image
texture. In contrast to an image texture, the corresponding proce-
dural texture is not limited in size and resolution, the procedural
texture is parameterized and can be edited, and the solid version of
the procedural texture does not require a texture parameterization.
This is illustrated in figure 11. Our method strictly decouples the
analysis phase and the synthesis phase, discarding the photograph
after the analysis phase. This allows us to integrate the synthesis
phase into for example a 3D modeling software package, a renderer
or a GPU shader. We have implemented our method as a Maya
plugin and as a GPU shader.

Our method is designed for isotropic stochastic textures. Figure 12
shows some unsuccessful examples of procedural textures created
with our method. Our method cannot reproduce marble veins and
wood grain. These are typically created procedurally by combining
turbulence with a sine function [Perlin 1985], and are not isotropic
stochastic textures.

Procedural textures constructed using our method can be extrapo-
lated to solid procedural textures simply by evaluating them using
3D wavelet noise bands. This is illustrated in figures 11 and 13.

Our method allows to morph between textures by interpolating
the parameters of the generated procedural textures. Figure 15
shows an example. All parameters are linearly interpolated, except
the transformation matrix, which is interpolated using quaternion
spherical linear interpolation.

Our method is perceptually motivated, similar to the method for tex-
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(a) Grass.

(b) Ceramic tile.∗

Figure 8: Successful examples of procedural textures created with our method.Each example shows a photograph of a real-world scene, a
photograph of a texture in the scene, a cropped version of the photograph of the texture, a procedural texture automatically generated from
the cropped photograph, and a rendering of a virtual scene textured using the procedural texture. The procedural textures in the examples
marked with an asterisk∗ were constructed using histogram matching.

ture synthesis by example of Heeger and Bergen [1995]. Textures
with similar first and second order statistics are difficult to discrim-
inate [Julesz 1962; Malik and Perona 1990; Heeger and Bergen
1995]. Our method for matching the power spectrum matches
second order statistics, and our method for histogram matching
matches the first order statistics.
Although our method fails on textures that are not isotropic stochas-
tic, it still constructs a procedural texture with matching image
statistics. These procedural textures are often still usable. For ex-
ample, structure is often found in higher frequencies, which are
filtered out with distance. This means that our method also works
for such textures as long as they are not inspected from nearby.
This is illustrated in figure 14 with the texture of figure 12(a). The
three dresses on the left use the image texture and the three dresses
on the right use the procedural texture. The texture appears more
similar with increasing distance. This is also illustrated in fig-
ure 8(a) with the texture of figure 12(d).
Because of this, our method might still be a valuable tool for mod-
eling textures that are not strictly isotropic stochastic. Since our
method is fast and fully automatic, our method might also be use-
full for bulk modeling of textures, for example when digitizing a
complete scene.

9 Comparisons

Heeger and Bergen [1995] and Portilla and Simoncelli [2000] pre-
sented parametric methods for texture synthesis by example. Our
method bears some similarity to these methods. The textures syn-
thesized with the method of Heeger and Bergen are similar to the
procedural textures constructed with our method. Both methods
also use a decorrelated color space and histogram matching.
Figure 16 compares the results of our method with the method of
Heeger and Bergen. The comparison is based on the publicly avail-
able steerable pyramid implementation of Simoncelli. The results
of both methods are similar. The major difference however is that
our method constructs a procedural texture, while the method of
Heeger and Bergen cannot be formulated as a procedural texture.
Heeger and Bergen synthesize a texture by iteratively matching the
histograms of the levels of the Laplacian or steerable pyramid of
the example texture and the synthesized texture. However, comput-
ing the histograms of the synthesized texture is a global operation.
This means that the method of Heeger and Bergen does not result
in a texture that is randomly accessible and cannot be formulated as

a procedural texture. Our method avoids this problem by deriving
the histogram of the procedural texture from the statistical prop-
erties of wavelet noise rather than computing it directly from the
intensity values.
The method of Heeger and Bergen and our method both use his-
togram matching, but in a different way. Our method uses his-
togram matching to compensate for the fact that multiresolution
wavelet noise always produces a texture with a Gaussian intensity
distribution, and uses a direct spectral method to match the textures.
In contrast, the method of Heeger and Bergen iteratively matches
the histograms of the levels of the pyramids of the textures to match
the textures.

Ghazanfarpour and Dischler [1995; 1996] introduced a spectral
method for automatic solid procedural texture generation from a
single or multiple 2D example textures. Their method constructs a
procedural texture from an example texture, consisting of a summa-
tion of a small number of weighted cosines, determined by the fre-
quencies with the highest amplitude in the Fourier transform. Their
method is designed for textures with only a few dominant frequen-
cies, such as checkerboards or wood, and cannot handle textures
with content on a large number of frequencies. In contrast, the
method presented in this paper is designed for isotropic stochastic
textures, and can handle content on a large number of frequencies.

Bourque and Dudek [2004] presented a very general system that
performs a two-phase search over a library of procedural shaders.
The first global search determines the texture class, and the second
local search determines the parameters of the procedural texture. In
contrast, our method directly computes the parameters of the proce-
dural texture, but is designed for isotropic stochastic textures. A lo-
cal search has significant disadvantages compared to a direct com-
putation. A local search is less efficient than a direct computation,
since evaluating a set of parameters requires rendering the texture
and evaluating the similarity to the example texture, and less accu-
rate than a direct computation, since the best parameters have to be
discovered in the potentially high dimensional space of parameters.

Methods for texture synthesis by example, including parametric
methods such as the method of Heeger and Bergen [1995], can
usually not be formulated as a procedural texture. Non-parametric
methods for texture synthesis by example, such as the method of
Wei and Levoy [2000], generally need the example texture in order
to synthesize a new texture, and do not allow to strictly decouple the

7



Report CW 546, May 2009, Department of Computer Science, Katholieke Universiteit Leuven.

(a) Vinyl flooring. (b) Blue towel.∗

(c) Rock salt lamp.∗ (d) Bluestone doorstep.∗

(e) Ceramic shower tile. (f) Blanket.∗

(g) Octagonal table. (h) Living room tile.

(i) Jeans vest.∗ (j) Rust.

(k) Clinker. ∗ (l) Granite (Rose Sarde).∗

(m) Granite (Bethel White).∗ (n) Granite (Shivakasi Yellow).∗

Figure 9: Several successful examples of procedural textures created with our method. Each example shows a photograph of a real-world
scene, a cropped version of a photograph of a texture, and a procedural texture automatically generated from the cropped photograph. The
procedural textures in the examples marked with an asterisk∗ were constructed using histogram matching.
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(a) Purple towel.∗ (b) Brick wall.

(c) Limestone brick.∗ (d) Ceramic tile.

(e) Concrete ceiling.∗ (f) Stone tile.∗

(g) Granite (Jasberg).∗ (h) Granite (Rustenbuild).∗

(i) Granite (Giallo Veneziano).∗ (j) Marble (Azul Valverde).∗

(k) Marble (Bianco Royal).∗ (l) Granite (Mountain Pink).∗

(m) Granite (Porrino).∗ (n) Human skin.

Figure 10: Several successful examples of procedural textures created with our method. Each example shows a photograph of a real-world
scene, a cropped version of a photograph of a texture, and a procedural texture automatically generated from the cropped photograph. The
procedural textures in the examples marked with an asterisk∗ were constructed using histogram matching.
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(a) (b)
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(c) (d) (e)

Figure 11: Advantages of procedural textures by example. (a) An image texture.(b) A larger procedural texture automatically generated from
the image texture. (c) A close-up of the top left corner of the image texture and the procedural texture. (d) An edited version of the procedural
texture. (e) A rendering of a virtual scene textured using the solid version of the procedural texture. In contrast to the image texture, the
procedural texture is compact (768 kB versus1 kB), is not limited in size and resolution, can be edited by manipulating the weights,and
removes the need for a texture parameterization.

(a) Dress.∗ (b) Wood.∗

(c) Marble (Blanc Carrara CD).∗ (d) Hedge.∗

Figure 12: Some unsuccessful examples of procedural textures created with ourmethod. Each example shows a photograph of a real-world
scene, a cropped version of a photograph of a texture, and a procedural texture automatically generated from the cropped photograph. The
procedural textures in the examples marked with an asterisk∗ were constructed using histogram matching.

Figure 13: A virtual scene textured using solid procedural textures
created with our method. Our method allows us to extrapolate 2D
procedural textures to solid procedural textures simply by evaluat-
ing the procedural textures using 3D wavelet noise bands.

Figure 14: Perceptual motivation for using procedural textures cre-
ated with our method. The three dresses on the left use the image
texture and the three dresses on the right use the procedural texture.
The textures appear more similar with increasing distance.
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Figure 15: Texture morphing. The texture of figure 9(m) is morphed into the texture of figure 11 by interpolating the parameters of the
corresponding procedural textures.
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(a) Figure 1. (b) Figure 6. (c) Figure 8(a). (d) Figure 9(h). (e) Figure 11. (f) Figure 12(a).

Figure 16: A comparison of our method to the method of Heeger and Bergen. Each example shows a cropped version of a photograph of
a texture, a procedural texture automatically generated from the croppedphotograph using our method, and an image texture synthesized
from the cropped photograph using the method of Heeger and Bergen. The results of both methods are similar, but the method of Heeger and
Bergen cannot be formulated as a procedural texture.

analysis and the synthesis phase. There have been efforts however
to port some of the advantages of procedural textures, such as ran-
dom accessibility [Lefebvre and Hoppe 2005; Dong et al. 2008],
resolution independence [Han et al. 2008] and compactness [Wei
et al. 2008], to texture synthesis by example.

10 Conclusion

We have presented a perceptually motivated method for creating
procedural textures by example, designed for isotropic stochastic
textures. From a single uncalibrated photograph of a texture we
compute a small set of parameters that defines a procedural texture
similar to the texture in the photograph. Our method allows us to
replace image textures with similar procedural textures, combining
the advantages of procedural textures and image textures. Creating
procedural textures by example has the potential to dramatically
improve the texturing and modeling process. Our method is fast,
robust and fully automatic. The method presented in this paper is
highly practical and is ready to be integrated into production ren-
dering software.

In future work, we would like to extend procedural textures by
example to more texture classes. Our method could probably be
extended to anisotropic stochastic textures using anisotropic noise
functions, such as the recently proposed anisotropic noise of Gold-
berg et al. [2008]. Parametric methods for texture synthesis by ex-

ample are most likely also a useful source of inspiration. We believe
that a general system for procedural textures by example could be
constructed by combining a global search method to determine the
texture class, like the one by Bourque and Dudek [2004], with a
method for determining the parameters of a procedural texture, like
the one presented in this work, for each texture class.
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KWATRA , V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts.ACM Transactions on Graphics 22, 3, 277–286.

KWATRA , V., ESSA, I., BOBICK, A., AND KWATRA , N. 2005.
Texture optimization for example-based synthesis.ACM Trans-
actions on Graphics 24, 3, 795–802.

LAGAE, A., AND DUTRÉ, P. 2005. A procedural object distribu-
tion function.ACM Transactions on Graphics 24, 4, 1442–1461.

LEFEBVRE, S.,AND HOPPE, H. 2005. Parallel controllable texture
synthesis.ACM Transactions on Graphics 24, 3, 777–786.

LEFEBVRE, L., AND POULIN , P. 2000. Analysis and synthesis of
structural textures. InGraphics Interface, 77–86.

LEWIS, J. P. 1989. Algorithms for solid noise synthesis.Computer
Graphics (Proceedings of ACM SIGGRAPH 89) 23, 3, 263–270.

MALIK , J., AND PERONA, P. 1990. Preattentive texture discrim-
ination with early vision mechanisms.Journal of the Optical
Society of America A 7, 5, 923.

NORTON, A., ROCKWOOD, A. P., AND SKOLMOSKI , P. T. 1982.
Clamping: A method of antialiasing textured surfaces by band-
width limiting in object space.Computer Graphics (Proceedings
of ACM SIGGRAPH 82) 16, 3, 1–8.

PEACHY, D. R. 1985. Solid texturing of complex surfaces.Com-
puter Graphics (Proceedings of ACM SIGGRAPH 85) 19, 3,
279–286.

PERLIN, K. 1985. An image synthesizer.Computer Graphics
(Proceedings of ACM SIGGRAPH 85) 19, 3, 287–296.

PERLIN, K. 2002. Improving noise.ACM Transactions on Graph-
ics, 681–682.

PIXAR , 2005. The renderman interface: Verstion 3.2.1.http:
//renderman.pixar.com/products/rispec/.

PORTILLA , J., AND SIMONCELLI , E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients.International Journal of Computer Vision 40, 1, 49–70.

QIN , X., AND YANG, Y.-H. 2002. Estimating parameters for
procedural texturing by genetic algorithms.Graphical Models
64, 1, 19–39.

REINHARD, E., ASHIKHMIN , M., GOOCH, B., AND SHIRLEY, P.
2001. Color transfer between images.IEEE Comput. Graph.
Appl. 21, 5, 34–41.

RUDERMAN, D. L., CRONIN, T. W., AND CHIAO , C.-C. 1998.
Statistics of cone responses to natural images: implications for
visual coding.Journal of the Optical Society of America A 15,
8, 2036–2045.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. InProceedings of ACM
SIGGRAPH 2000, 479–488.

WEI, L.-Y., HAN , J., ZHOU, K., BAO, H., GUO, B., AND SHUM ,
H.-Y. 2008. Inverse texture synthesis. vol. 27, 1–8.

WORLEY, S. 1996. A cellular texture basis function. InProceed-
ings of ACM SIGGRAPH 1996, 291–294.

12


