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Abstract

Multi-Agent Systems have been proven to be a useful paradigm

for solving complex coordination and control problems involving

large numbers of autonomous entities interacting in a dynamic en-

vironment. Traffic Control is one such problem. In this report we

present a novel software architecture based on ”Delegate-MAS” that

implements simplified traffic control in a pro-active manner by trying

to predict and avoid road congestion. The report describes the de-

velopment process and presents a proof-of-principle implementation

to validate the approach.
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1.1. TRAFFIC CONTROL SYSTEM CONTENTS

1.1 Traffic Control System

This report describes the design of a multiagent system (MAS) software architecture for a simplified
Traffic Control System (TCS). A TCS systems tries to optimize the use of the road network in a
proactive way by trying to predict and avoid road congestion. Traffic Control (like manufacturing
contol and web service coordination) is an example of acoordination and control-class application
and it has been argued [6] that the MAS paradigm is a suitable approach to modeling these kinds of
applications. Characteristics of such applications include:

• There is an underlying (physical or software) system that needs to be controlled by a top layer
software system.

• The top layer works at a much faster speed, it can plan ahead.

• It is a task-oriented application domain where a task entails moving through the environment
(mobile entities) and performing operations using resources (static entities).

• Constitutes of a large number of distributed entities in a very dynamic environment.

• Complex functional / non-functional requirements.

• Centralized software architectures are typically unsuitable.

In agent based TC agents (software or robotic) are located in different locations, receive sensor data
that are geographically distributed, and must coordinate their actions in order to ensure global system
optimality [8]. Research into using MAS for solving TC is not new and has been explored by various
researchers [5, 11] and private companies [2, 3].

In what follows we present the different stages of the development process (conform the principles
of the Universal Process (UP)) en route to our software architecture. A simple proof-of-principle
implementation will also be provided to validate the proposed design. The report concludes with a
critical evaluation and pointers to future improvements.

1.2 Development Process

1.2.1 Practical remarks

The development of this project was carried out with the Eclipse platform [1]. Matlab was used for
experimentation and testing. The integral implementation, including the test scenarios, is available at:

http://www.cs.kuleuven.be/~danny/DelegateMAS/Traffic-Control-DelegateMAS.zip

1.2.2 Domain Model

The domain model is that of a simplified TCS that attempts to deal with congestion in a pro-active
manner. Such a system supports the coordinated navigation of many cars in a road network, avoiding
as much as possible that congestion arises in the (near) future, and thus achieving a more efficient use
of the road network. The system relies on smart cars as well as smart roads which are equipped with
electronic devices, sensors and communication hardware. Smart cars support the driver by providing
up-to-date information or even partially or fully automated driving itself. Smart roads monitor traffic
and support the smart cars in their decision making process. For a list of the exact simplifications
made see section 1.2.3.2.
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1.2. DEVELOPMENT PROCESS CONTENTS

1.2.3 Requirements Analysis

The requirements of the project have been established using, where applicable, the FURPS+ model.

1.2.3.1 Functional requirements

These specify everything that a user of the system would need to know regarding what the system
does.

1. The TCS should support the coordinated navigation of many cars in a road network, trying to
avoid congestion in the (near) future as much possible, and thus achieve a more efficient use of
the road infrastructure. Given a road network with a number of bottlenecks the application of
the implemented pro-active TCS should result in a significant decrease in congestion over more
simpler traffic control methods (ie. all drivers take the shortest path to their destination).

2. The performance of the TCS must be measurable. There must be ways to establish: the time
cars have spent standing still due to congestion and the time (or cycles) they took reaching their
destination (routing efficiency).

1.2.3.2 Non-functional requirements

The non-functional requirements describe constraints on the operation or development of the system
[4]. We also include the domain simplifications made as operation constraints.

Implementation constraints:

• Adopt a MAS problem decomposition.

• Implement using an Object-Oriented (OO) programming language (C++, C# or Java)

Problem simplifications:

• Synchronous computation and actions for all components of the system (ie. all cars move in
lock-step)

• All roads have a length and a direction

• A road is discretized into segments of fixed length.

• Crossroads have incoming and outgoing roads

• At any timestep, a road segment can be occupied by at most one car.

• All cars move at the same speed: 0 or 1 segments per time step

• All cars and sections of roads are equipped with electronic sensors and communication capa-
bilities. One road segment is able to communicate with all segments within a user specified
range and with the car occupying it. Likewise a car is only able to communicate with the road
segment is is currently situated on.

• Each car maintains simple state information: current position and trip information (start location
and destination)

2



1.2. DEVELOPMENT PROCESS CONTENTS

• Each car is behaves completely deterministically, it adheres fully to the suggestions made by
the TCS.

Evolution points (possible extensions) :

• Dynamic road network (allowance for road works, obstruction, new roads ...)

• Non-deterministic car behavior (include the possibility that the driver doesn’t always follow the
system’s advice)

• Asynchronous computation and actions

• Cars have different speeds.

1.2.4 Mapping Requirements to Architecture

In this section we consider how the requirements mentioned above may be mapped onto a concrete
MAS based software architecture.

1.2.4.1 Describing factors

The requirements constitute factors which have an impact on the architecture. The following table
describes the requirements and their consequences ([7]).

Factor Measures and quality
scenarios

Impact of factor on architec-
ture

Priority
for success

Difficulty
or risk

proactive traffic
congestion sys-
tem

A significant difference
in the time spent in con-
gestion compared to a
scenario without traffic
control.

A proactive congestion control
system is not viable with a cen-
tralized system: a distributed
system is required, if only for
scalability.

H H

measurable per-
formance

Aat the end of every sce-
nario the performance
measures should be
easily retrievable (time
spent in congestion,
distance travelled and
total travelling time).

Use of standard output to display
performance characteristics.
Possibly making use of a logging
library. This allows performance
output without affecting the main
functions

H L

1.2.4.2 Resolution of architectural factors : major decisions

Now that the requirements and their impact have been detailed, the architecture can be designed as a
solution to these requirements.

• ISSUE

– Functionality : proactive traffic control system

• FACTOR
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1.2. DEVELOPMENT PROCESS CONTENTS

– Significantly better than no traffic control system: improvement in travel time and decrease
in time standing still (the two are correlated).

• SOLUTION

For a proactive traffic control system, centralized control is not realistic. The system must be scalable
to an entire wide area road network. If centralized, this would require an enormous amount of com-
munication, not to mention vast computing resources. A distributed system involving delegation is
necessary.

A simplistic approach to decentralization would be to distribute the centralized system over a lim-
ited number of geographical regions in a hierarchical way. Such an approach has been adopted in
other work [11], but rather as a way to deliver information to the drivers about meteorological condi-
tions, preferred trajectories etc. So it was not used for the explicit routing of every car individually,
this would demand a lot of planning and communication between nodes (’traffic managers’ in [11]).

A fully decentralized solution involving autonomous agents for traffic routing, on the other hand,
is very scalable. For this to work rules need to be defined at the agent level to ensure agents cooperate
and the road network as a whole is used in an optimal way. Such decentralization also eases the
handling of a dynamic road network.

1.2.4.3 Chosen Software Architecture

In this project we have chosen to adopt the Delegate-MAS software architecture described in [6]. This
architecture (in the context of TC) consists of the following entities:

• The Environment is a dynamic directed graph through which agents move.

• Task Agentsthat try to accomplish a task by moving through the underlying resources (repre-
sented by resource agents). Eg: a car that needs to move from start to finish through the road
network. In order to accomplish their goal task agents iterate through a BDI-like control loop.
The difference with standard BDI is that the implementation of each step (collect beliefs, reason,
select intention) is delegated to simple delegate agents called ants. These are simple reactive
agents that traverse the environment using stigmergy to communicate and gather information.

• Resource Agentsthat manage the use of a certain resource. In this case the resource is a road
segment, that can only be occupied by one car at a time. The task agents use resource agents to
book a certain resource in advance, taking into account if the resource is free at that moment.

• Delegate Agents(ants):

– simple, reactive agents that are created, sent out, and collected by task- and resource agents

– virtual entities, not directly connected with anything physical

– behaviour inspired by food foraging in ant colonies

– communicate with other ants through the environment (stigmergy)

– navigate virtually through the resources at a much faster rate than the task agent

– 3 types1

1The feasibility and exploration ants serve similar purposes as the Forward and Backward ants in the AntNet system
[10].
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1.2. DEVELOPMENT PROCESS CONTENTS

∗ Feasibility Ants: sent out by resource agents, gather information about the underlying
environment itself (which roads lead to which destinations). These are the ants that
detect changes to the environment (severed roads, new crossroads, ...)

∗ Exploration Ants: sent out by task agents, scouts that travel through the network
gathering information about possible routes (how costly is a route)

∗ Intention Ants: sent out by task agents, fix an intention in the environment (reserve
the best route). Task agents must create intention ants to refresh their intention at a
frequency that is sufficiently high to maintain their reservations.

Other papers on the subject mention different techniques for implementing a TCS. One system doesn’t
consider road segments but only intersections, their management, and constraints on those intersec-
tions [5]. The agents are the individual cars and the intersections. The intersections, overpasses and
crossroads keep track of reservations. The car calls ahead to the intersection to book its passage. The
intersection is itself aNxN grid, and a car will occupy only a part of this grid. It is a BDI agent
system, which uses planning, and messages - the car plots its course, and variable speeds are used to
avoid congestion.

Other researchers study traffic control at a higher level. One of these has traffic manager agents,
which communicate with meteo agents, plan agents and other information providing agents to manage
the traffic flow [11] (communication using FIPA standards).

The reason for choosing a Delegate-MAS architecture instead of the standard BDI based architec-
ture is because of the complexity and dynamics of the system we are trying to model (Traffic Control)2.
TC is an example of a coordination and control problem and it has convincingly been argued that a
Delegate-MAS architecture provides a suitable solution for such problems [6]. The disadvantages of
a pure BDI approach include:

• How to represent knowledge and keep it up to date?

• Explicitly employing means-ends reasoning (planning) is far to costly and difficult for traffic
control.

• The environment may change while the agents is deliberating, this means that chosen intentions
are not guaranteed to stay optimal within one iteration.

A pure subsumption architecture would be also possible for traffic control. However, by definition
such a system is not proactive, agents only act locally and on very short term, there is no learning. In
addition designing subsumption rules for a complex problem as TC is no trivial undertaking.

A similar thing is true with purely reactive agents based solely on stigmergy (Ants). Though they
have been used successfully in network traffic routing (AntNet [10]) in our case we would like agents
with more intelligence and a stronger notion of state/objectives/.... This is especially true if our system
were to be extended to a more realistic TCS.

Another possible MAS model is Maes’ Behavior Network for Situated Agents. However, it too is
not really suited for the TC problem (how to specify the behavioral links, how to keep the behavior
graph up to date in an efficient way, ...). Maes’ model is more suited to problems were accomplishing
a goal can easily be stated in terms of accomplishing subgoals with inter dependencies.

A hybrid agent architecture (a combination between reactive and reasoning agents) them seems
like a good approach that combines both the practical and reactive agent types. However, while this

2This is of course even more so for the Deductive Agent Architecture.
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1.2. DEVELOPMENT PROCESS CONTENTS

Figure 1.1: High Level Architecture Diagram

approach could be applied it is still more complex than the Delegate MAS architecture. Hybrid agents
make use of a layered architecture and thus requires the designer to explictly define how these layers
may interact without losing flexibility or fault tolerance. In contrast, the Delegate MAS approach gives
us the flexibility and ease of implementation of reactive agents while still providing simple BDI-like
abstractions that ease high level coordination and behavior control.

1.2.5 Concretizing the Software Architecture

In this section we now zoom in and describe the architecture in more detail.
To design the TCS we used a hybrid bottom-up / top-down approach. The top-down approach

aids in understanding the control flow, the problem from a use-case point of view, while the bottom-
up view helps to understand the responsibilities of each individual entity involved. Switching between
both iteratively manner helped to better understand the problem domain and how to mold the solution
in software.

The result of this process is depicted in figure 1.1.

1.2.5.1 Bottom-up

To get an overview of the different entities involved in the TCS we listed them in a CRC-card like
manner.

• Car

– Characterized by: location, position, an origin, a destination
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1.2. DEVELOPMENT PROCESS CONTENTS

– Behavior: moves from origin to destination at a minimum cost (distance and/or time)

• Road

– Characterized by: length (number of segments), direction, neighboring crossroads

– Behavior: divided into segments, accommodates cars moving in the direction of the road
between two neighboring crossroads

• Segment

– Characterized by: keeps a reservation list holding a record of cars that have reserved this
segment at a particular point in time

– Behavior: may only contain one car at a time, reservations evaporate over time

• Crossroad

– Characterized by: incoming and outgoing roads

– Behavior: connect multiple roads, consist of one segment, potential traffic bottlenecks

• Traffic network

– Characterized by: a list of roads and crossroads

– Behavior: map shared by all cars

Now that we have a high level idea of how our system is composed we can consider how they interact.

1.2.5.2 Top-down

For the top-down part we used pseudo code to understand and define the control flow of the simplified
TCS using a Delegate-MAS based design. Again note, of course, that we are dealing with a simplified,
synchronized TCS which allows us to sidestep many potential issues that arise in a real, concurrent
system. The control flow of our TCS is shown below:

Network TN; //The traffic infrastructure
Cars cars; //List of cars

//Main loop
while(cars.notReachedDestination()) do

//Let each car figure out the best route it can take.
foreach(c : Cars)

//Gather information from the environment, like
//what are the possible routes from this location (Beliefs).
c.think();

//Explore the different options taking into account
//congestion in a pro-active way (Desires).
c.plan();
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1.2. DEVELOPMENT PROCESS CONTENTS

//Decide what to do, reserve a route (Intentions).
//This includes potentially revising the current intention.
c.decide();

end
//Let each car move one step on its current route.
cars.move();

//In the spirit of Delegate-MAS we need some kind
//of evaporation of information in the environment.
//This is realized by evaporating route reservations.
TN.decayReservations(eps);

end

Since we have opted for a Delegate-MAS based architecture the high level control flow is distinctly
BDI in nature. It is in the stepsplan() and decide() that the delegate ant-agents come into
play. Note that, due to complexity, we do not consider feasibility ants (though this functionality
could be easily added at a later stage). Also note that, while the final version of our TCS will use
delegate agents the first iteration will not include this functionality. In the initial version the methods
think() , plan() , anddecide() will simply always choose the shortest path to the destination.
This allows us to have a simple prototype up and running quickly and allows us to identify any design
flaws early on. For the delegate versions the working is as follows:

think():
//To keep things simple we do not use feasibility ants here,
//we assume there is some navigational tool available which
//is able to return different possible routes.
routes = gatherPossibleRoutes(currentLoc, dest);

plan():
//Explore the set of possible routes
foreach(route : routes)

ants[i] = new ExplorationAnt(route);
ants[i].explore()

end

//Each ant keeps a record of the cost of each route.
//The cost is defined as: cost = w_d*distance + w_w*timeWaited
bestRoute = minimalCost(ants);

decide():
//If the the new best route is better than the current
//best route by ’delta’ update our intention.
if(reviseIntention(bestRoute,curRoute,delta))

curRoute = bestRoute;
end
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1.2. DEVELOPMENT PROCESS CONTENTS

//Fix our interest in the route in the environment
//by reserving the corresponding road segments.
ant = new IntentionAnt(curRoute);
ant.bookRoute();

From the pseudo-code we see our TCS will end up with four tunable parameters:

1. wdistance, wwaiting: the relative importance of the distance traveled versus the time spent wait-
ing due to congestion. A value ofwwaiting = 0 reduces our TCS to one without congestion
control (simple shortest path). For a realistic situationwdistance, wwaiting should probably be
set equal to one another, since the aim of a traffic control system is mostly to optimize the time
spent in traffic for every car.

2. δ: how quickly should we revise our intention : this will determine whether the car agents are
cautious or bold. The task agents have an open-minded form of commitment, which means they
are allowed to change their intentions.

3. ε: how quickly should reservations decay, the largerε the longer they remain valid.

The actual values of these parameters can be tuned according to the requirements of the final user of
the system.

Now that we have a good understanding (bottom-up and top-down) of how our TCS will work we
are ready to start on the detailed design.

1.2.6 Detailed Design

In this section we condense the discussion above into the single, formalized class diagram shown in
figure 1.2.
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Figure 1.2: Class diagram
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1.3. EVALUATION CONTENTS

As can be seen from the diagram the traffic network is built upon an existing graph library
(JGraphT). Otherwise the diagram should be self explanatory. Accessor methods were not included,
their presence is implicit. This is the updated diagram, including the few methods that were added
during development.

As mentioned in section 1.2.3.2 a sequential design was used in the scope of this project, to avoid
the issues associated with multi-threaded designs (synchronization, mutual use of shared resources,
deadlock). Multi-agent systems are parallel processes by nature, the activities of an agent should
in theory be independent of what other agents do (concurrent problem solving), when they don’t
collaborate or use the same resources. However, multi-threaded design brings a lot of difficulties [9],
so in the context of this project it was suggested we loop over all the agents in a sequential manner.

1.2.7 Implementation

The implementation of the TCS was done in two steps: first without pro-active congestion control
(ie. simple shortest path routing) and then with it included. This allowed us to catch any design flaws
before implementing the congestion control. However, it turned out that the implementation went
very smoothly, no design related errors or problems were encountered. The implementation was done
in Java 1.5.

1.3 Evaluation

In this section we run our implementation on two scenarios and investigate the impact adding conges-
tion control has. One simple and one complex, lifelike scenario was considered. The scenarios are
explained below together with the performance results.

1.3.1 Simple Scenario

The first scenario we consider is shown in figure 1.3. The cars are distributed as follows:

• 10 cars going from A to E

• 10 cars going from B to E

Figure 1.3: Map of the simple scenario

Studying the map one would expect congestion to arise at B if every car tries to follow the shortest
route. If congestion control is switched on however, cars coming from A will notice a bottleneck at B

11



1.3. EVALUATION CONTENTS

and take the longer route A-C-E instead. That this is indeed the case is shown by the program trace
below (cars were randomly ordered on start).

-- Simulation Result : no congestion control ---
Car c1, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=16, timeWaited=9
Car c5, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=7, timeWaited=0
Car c3, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=31, timeWaited=24
Car c1, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=23, timeWaited=16
Car c6, path=B->E, history=[B, D, E], distance=5, timeTravelled=8, timeWaited=3
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=28, timeWaited=23
Car c1, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=37, timeWaited=30
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=30, timeWaited=25
Car c7, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=35, timeWaited=28
Car c10, path=B->E, history=[B, D, E], distance=5, timeTravelled=25, timeWaited=20
Car c9, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=10, timeWaited=3
Car c5, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=26, timeWaited=19
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=21, timeWaited=16
Car c8, path=B->E, history=[B, D, E], distance=5, timeTravelled=18, timeWaited=13
Car c3, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=14, timeWaited=7
Car c3, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=33, timeWaited=26
Car c5, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=39, timeWaited=32
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=12, timeWaited=7
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=5, timeWaited=0
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=19, timeWaited=14

Total time spent in congestion: 315
Total distance travelled: 122
Total travel time: 437

-- Simulation Result : with congestion control---
Car c1, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=24, timeWaited=17
Car c7, path=A->E, history=[A, C, E], distance=9, timeTravelled=26, timeWaited=17
Car c5, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=7, timeWaited=0
Car c1, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=26, timeWaited=19
Car c10, path=B->E, history=[B, D, E], distance=5, timeTravelled=29, timeWaited=24
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=13, timeWaited=8
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=5, timeWaited=0
Car c3, path=A->E, history=[A, C, E], distance=9, timeTravelled=22, timeWaited=13
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=22, timeWaited=17
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=18, timeWaited=13
Car c2, path=B->E, history=[B, D, E], distance=5, timeTravelled=14, timeWaited=9
Car c1, path=A->E, history=[A, C, E], distance=9, timeTravelled=12, timeWaited=3
Car c5, path=A->E, history=[A, C, E], distance=9, timeTravelled=14, timeWaited=5
Car c9, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=11, timeWaited=4
Car c5, path=A->E, history=[A, C, D, E], distance=7, timeTravelled=16, timeWaited=9
Car c6, path=B->E, history=[B, D, E], distance=5, timeTravelled=9, timeWaited=4
Car c3, path=A->E, history=[A, C, E], distance=9, timeTravelled=20, timeWaited=11
Car c8, path=B->E, history=[B, D, E], distance=5, timeTravelled=28, timeWaited=23
Car c4, path=B->E, history=[B, D, E], distance=5, timeTravelled=20, timeWaited=15
Car c3, path=A->E, history=[A, C, E], distance=9, timeTravelled=18, timeWaited=9

Total time spent in congestion: 220
Total distance travelled: 134
Total travel time: 354

Given these figures we can now calculate the percentual difference in performance for this scenario.
This is shown in table 1.1.

1.3.2 Complex Scenario

The second scenario is a more complex one and was inspired by a real life congestion point: the
Leonard crossroad, which is the crossing between the Brussels Ring and the E411 motorway. This is
a well-known point of congestion. The people commuting from Overijse or farther south into Brussels
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Timesteps Congested Distance Travelled Total Travel Time

Shortest Path 315 122 437
Pro-Active Congestion Control 220 134 354

% Difference -30% +9% -18%

Table 1.1: Influence of Congestion Control(wwaiting = 1, wdistance = 1, δ = 1, ε = 1)

every morning have several alternatives to get into Brussels, and a few of them were taken into account
in this scenario. This scenario was used to check how the TCS system would perform in a complex
and demanding scenario, and whether it’s really as scalable as it’s supposed to be.

Figure 1.4 shows the map of this situation (alternative roads shown in colored lines). The corre-
sponding graph is depicted in figure 1.5. Some extra traffic is added on the ring and on the E411, to
add to the realism of the simulation. Only the morning traffic is considered, so cars are travelling from
Overijse to Brussels, and in both directions on the ring.

The traffic streams are as follows (the numbers are obviously smaller than in the real scenario, to
keep processing times reasonable):

• cars c1 to c100 go from A (Overijse) to G (Brussels)

• cars d1 to d50 go from F (south part of Ring-O) to I (north part of Ring-O)

• cars e1 to e50 go from I (north part of Ring-O) to F (south part of Ring-O)

This has the effect that the cars are leaked into the scenario at the edges, while in reality cars are liable
to come from different points on the road. Since a large part of the scenario is motorway, however,
this is likely to be close to reality. To make it more realistic, E411 has three lanes, and the ring has 2
lanes in both directions. The lanes are modeled as edges of the graph, with the possibility to change
lanes in certain points (small symbolic edges).

Figure 1.4: The shortest path is indicated in red. Possible alternative routes are highlighted in other
colors (yellow, green, blue).
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Figure 1.5: Graph model for the real scenario. 3 lanes on the E411, 2x2 lanes on the ring.

The corresponding performance figures of running the scenario twice are shown in table 1.2. The
trace of the program is a bit too long to display here.

Timesteps Congested Distance Travelled Total Travel Time

Shortest Path 14650 27800 42450
Pro-Active Congestion Control 10835 29050 39885

% Difference -26% +4% -6%

Table 1.2: Influence of Congestion Control(wwaiting = 1, wdistance = 1, δ = 1, ε = 1)

The improvement was smaller than in the simple scenario in relative terms, but in absolute terms
a lot was gained.

1.3.3 Parameter Tuning

We can now study the effect the tuning parameters have on the simulation. For this we shall use a
simplified version of the complex scenario described above. The network graph is shown in figure
1.6. The traffic distribution is as follows:

• 50 cars going from A to G

• 25 cars going from I to F

• 25 cars going from F to I

Thus crossroad E is the bottleneck that must be avoided.
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Figure 1.6: Model of the real scenario

Let us first consider the cost weightswwaiting, wdistance. Figures 1.7, 1.8, 1.9 show plots of the
performance landscape for these parameters (using the complex scenario). The results are aggregated
over all cars.

Figure 1.7: Performance landscape forwwaiting, wdistance (timesteps congested)
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Figure 1.8: Performance landscape forwwaiting, wdistance (distance travelled)

Figure 1.9: Performance landscape forwwaiting, wdistance (total traveling time)
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Again the results of the figures are intuitive: the more emphasis you place on congestion avoidance
the less time you will spend waiting in queues. The downside is that as a result you will have to travel
further and your trip might take longer. One may question, though, why the increase in total travel
time is so extreme as it is for low values ofwdistance in figure 1.9. The reason is quite simple. The
scenario only contains one bottleneck (E) and the only way to avoid it is by taking a very large detour
(over H or over B and F). Therefore if the congestion at E is really bad (of equivalently, we increase
wwaiting

wdistance
) the cars have to travel a lot further to avoid the congestion (see figure 1.8). Consequently

their total travel time is increased significantly. If we add a few extra edges or reduce the distances
between D,H and G for example the results are not so extreme.

So, in sum, the plots show us that by varying the weights the TCS will optimize a different objec-
tive. Ultimately it will depend on the user of the TCS. Depending on priorities, the weights could be
varied as follows :

• if the objective is to minimize travelling time, then distance and time standing still are given
equal weight

• if the objective is to minimize fuel consumption, distance is given greater weight

• if the objective is to minimize frustration, which is most likely to occur when standing still, then
congestion is to be avoided as much as possible, at the cost of increasing the distance

If we fix bothwwaiting, wdistance to 1 we can now investigate the impact of the other two parameters:
ε (the evaporation rate) andδ (intention revision sensitivity). It is expected that decreasing the evap-
oration rate will disturb the congestion control, because reservations will be kept on for longer than
they are needed. On the other hand, decreasing delta will make the cars more bold, they will change
their intentions more quickly. This should make the congestion control more chaotic, since cars are
liable to change route as soon as they find a marginally better route, and so reservations will change
at a moment’s notice. This, combined with an longer evaporation time (largerε), could cause the
congestion control to actually worsen the traffic management. Conversely, increasing the evaporation
rate and making the cars more cautious, could have beneficial effect, up to a certain point, where cars
don’t ever change their intention about a route, even when they should.

The results are shown in figures 1.10, 1.11 and 1.12.
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Figure 1.10:δ − ε Performance Landscape (time congested)
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Figure 1.11:δ − ε Performance Landscape (total travel time)

Figure 1.12:δ − ε Performance Landscape (distance travelled)
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Unfortunately it turns out that we don’t really get what we would expect. The performance land-
scapes are very chaotic and it is hard to discern any trends. Only the total travel time landscape really
agrees with the intuition that the faster we revise our intentions and the longer these intentions are
reflected in the environment the worse the travel time. Further tests did not clarify this picture. It
seems there is a complex interaction between scenario type, number and ordering of cars,δ andε that
defies any simple intuitive explanation.

Maybe the problem lies in the nature of the scenario: there are only a few ’choice points’, and once
those points are passed, not a lot of variation is possible. So the variation of boldness of agents and
evaporation rate only counts in the planning before those choice points. When the evaporation rate is
slow, the reservations, once made, will stay on beyond their usefulness, so this will distort the choice
of the best path. Shortest paths will quickly become more expensive because more cars will initially
choose them. If the agents are quite cautious, this influences their behaviour less, because once a path
is chosen, this is less likely to change. This results in peaks and valleys for certain combinations of
δ andε, depending on whether the configuration allows them to make the right decision regarding
congestion or distance before the critical choice points.

Combining congestion and distance into traveling time, the overal trend is clearer: beyond a
certain value of cautiousnessδ, the decision will not be that much influenced by the value of the
evaporation rateε, because the paths will not vary that much, so the evaporation rate doesn’t influence
the result. For bolder agents, decreasing the evaporation rate (increasingε) will push up the traveling
time, as the paths are more likely to change, and the ’old’ reservations are more likely to interfere in
the choice of the optimal path.

Logically the evaporation rate will be kept high (ε low), since there is no reason in this system to
keep reservations alive longer than necessary.

1.4 Conclusion

In this project we have introduced the problem of traffic control and described the software architec-
ture of a simulator that simulates traffic control. Due to the large scale and dynamic environment that
characterizes traffic control (it is an example of a coordination and control problem) a Delegate-MAS
based software architecture was chosen.

The TCS was implemented and its performance compared against a simple TCS that always routes
the cars along the shortest path. As the previous section showed the use of pro-active congestion
control proved beneficial and we can consider the implementation to work successfully. Unfortunately
we were unable to properly interpret the relationship between the tuning parametersδ andε. This is
an issue that requires further investigation.

We now take a step back and consider critically what limitations are of our TCS and how the
design and implementation may be improved. The major critique of our TCS is its simplicity. By
adopting the simplifications listed in the requirements we sidestep many problems that arise in a real
life traffic situation. However, considering the complexity of the problem a more realistic version
would be out of scope for this project. Besides these simplifications, additional constraints of our
implementation include:

• No backtracking (’U-turn’) possible.

• Totally deterministic behavior. It would be interesting to study the effect of a stochastic de-
cision process, where a car agent could choose a second-best or third-best road with a lower
probability.
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• Our current implementation does not rely on feasibility ants for mapping the road network. It is
assumed that every car has navigational system that, given the network map, is able to return all
possible paths between two places. Since all cars share the same network object (singleton) we
areable to cope with dynamically changing networks, however our solution is not at all scalable
to larger networks. There enumerating all possible paths explicitly is not feasible. However we
stress that adding this functionality would be easy to do given our architecture. It would simply
boil down to adding an extra methodNetwork.explore() to themain method that would
take care of sending out feasibility ants. The methodgatherPossibleRoutes(currentLoc,
dest) would then return the information gathered by the feasibility ants instead of a doing a
full NP-complete graph search.

• The inability of being able to visualize the simulation in real time made it difficult to understand
what was going on in more complex scenarios. This also made it difficult to see whether certain
results were due to the congestion control mechanism or due to the particular scenario (order
and placement of cars, particular network, ...).

• The system could use additional optimizations, running complex scenarios with many cars
proved very computationally expensive.

• We did not consider communication among task agents (other than the indirect communication
through ants), it would be interesting to investigate the impact of letting cars share knowledge
in a P2P like manner.

Reflecting upon the Delegate-MAS software architecture we feel it to have been a good choice. It
provides a nice balance between reactive and practical agents and has a natural implementation within
traffic control. However, we do feel that one potential problematic aspect of the architecture is the
definition of the feasibility ants. Defining how these ants should collect, or more importantly com-
bine, feasibility information efficiently (avoiding flooding) in complex, dynamic graphs so that the
information is truly useful does not seem an easy task. In addition a Delegate-MAS system may be
hard to tune. Due to the many interacting agents it is hard to see what tuning parameter values make
sense a priori. However in a sense this non determinism could be seen as a disadvantage of MAS in
general. This does not remove the fact that it is a promising technology, and our simplified system
gives a good enough result to warrant further investigation.
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