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Abstract

Ever since their invention 30 years ago, checked exceptions have
been a point of much discussion. On the one hand, they increase the
robustness of soft ware by preventing the manifestation of unanti-
cipated checked exceptions at run-time. On the other hand, they
decrease the adaptability of software bec ause they must be propag-
ated explicitly, and must often be handled even if they cannot be
signalled.

We show that these problems are caused by a conflict between
the exceptional interface of a method and the principle of abstrac-
tion. We then solve this conflict by introducing anchored exception
declarations, which allow the exceptional behaviour of a method to
be declared relative to that of others. We present their formal se-
mantics, along with the necessary rules for ensuring compile-time
safety, and give a proof of correctness. We show that ancho red
exception declarations do not violate the principle of information
hiding when used properly, and provide a guideline for when to use
them.

We have implemented anchored exception declarations as an ex-
tension to the ClassicJava programming language, called Cappuccino.
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CR Subject Classification : D.2.5, D.3.1



Combining the Robustness of Checked Exceptions
with the Flexibility of Unchecked Exceptions using
Anchored Exception Declarations

Marko van Dooren and Eric Steegmans
Katholieke Universiteit Leuven

1. INTRODUCTION

The common way of dealing with exceptional conditions in object-oriented software is the
use of an exception handling mechanism. When an exceptional condition is detected by a
component, the latter raises an exception and signals it to the caller. The caller can then
handle the exception in a context dependent manner. This way, the reusability of a compo-
nent is improved by removing the specific logic for handling the abnormal condition from
that component. Additionally, exception handling mechanisms force a separation of nor-
mal code and exception handling code, resulting in programs that are easier to understand.

Exceptions can be divided into two categories: checked exceptions and unchecked ex-
ceptions. Checked exceptions must be propagated explicitly by listing them in the method
header, while unchecked exceptions are propagated implicitly.

Checked exceptions improve the robustness of software [10; 25; 24]. Because every
checked exception that can be signalled during the execution of a method must either be
listed in the exception clause – the throws clause in Java – of that method or handled
in its body, it is impossible to encounter an unanticipated checked exception at run-time.
The programmer is forced to take a decision for every checked exception, so he can be
reasonably sure that all checked exceptions are handled properly.

As the software evolves, checked exceptions may need to be added to or removed from
existing methods [24; 25]. The exception handling mechanism will reject all methods
that can encounter newly added checked exceptions, but do not deal with them. Outdated
exception handlers for checked exceptions that cannot be signalled anymore will also be
rejected, keeping the source code clean. Consequently, all affected methods must be mod-
ified manually by the programmer.

Unfortunately, checked exceptions also complicate the adaptability of software. Because
a checked exception must be explicitly listed in the method header when it can be signalled,
it leaves marks along every chain of method invocations that propagates the exception. This
becomes problematic when the software evolves, since a new checked exception introduced
at the end of a chain will trigger changes in every link of the chain until it is handled. The
exception handling mechanism does not only force a programmer to handle the exception
at the appropriate places, but also demands the modification of many methods that only
propagate the exception. Consequently, dummy exception handlers are added to filter out
checked exceptions that cannot be signalled. These handlers not only clutter the code,
but they also discard exceptions if the filtered exception can actually be signalled after the
software has evolved.

Another problem with checked exceptions is the lack of context information available to
the exception handling mechanism. Often, a programmer knows that a checked exception
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cannot be signalled by a method invocation, but the exception handling mechanism does
not.

In this paper, we track down both problems to a conflict between the exceptional inter-
face of a method and the principle of abstraction. We then solve the conflict by introducing
anchored exception declarations to provide a relative means to specify the exceptional be-
haviour of a method besides traditional absolute declarations. Anchored exception declara-
tions will be presented as an extension to ClassicJava [7]. The mechanism itself, however,
is not specific to the Java programming language, nor to any particular exception handling
mechanism.

Overview

In section 3, we present the root of the problems with checked exceptions. We introduce
anchored exception declarations in section 4, along with the rules that are necessary for
compile-time safety. In section 6.1, we show that anchored exception declarations do not
violate the principle of information hiding when used properly. In section 6.2, we define
which modifications of source code make sense, and which do not. We present the im-
plementation of anchored exception declarations in section 5, followed by a case study in
section 9. We discuss related work and future work in sections 10 and 11, and we conclude
in section 12.

2. EXCEPTION HANDLING IN CURRENT LANGUAGES

In their extensive study of exception handling mechanisms[9], Garcia, Rubira, Ro-
manovsky, and Xu differentiate four ways of combining the method header with the ex-
ception handling mechanism:

—The first option is not to let the exception handling mechanism interfere with the method
header; there is no support for enumerating the signalled exceptions. Languages taking
this approach are: Ada 95, Smalltalk, Python, Eiffel, Delphi, BETA, and C#. In this
approach, all exceptions are unchecked exceptions.

—A second option is to support the enumeration of exception types in the method header,
but to make it optional. Lore, C++, and Arche fall into the category of languages with
optional support for mentioning exception types. Again, all exceptions are unchecked
exceptions.

—The third option, used in Modula-3, Guide, and Extended Ada, not only allows the pro-
grammer to put exception types in the method headers, but forces the programmer to
mention every exception that can be signalled. Here, all exceptions are checked excep-
tions.

—A fourth approach, introduced in Java, is a hybrid form of the second and the third
option. In Java, any exception that can be thrown by a method, and is not an instance
of RuntimeException or Error must be mentioned in the header. All exceptions
that are instances of RuntimeException and Error are unchecked exceptions, the
others are checked exceptions.

3. A CONFLICT WITH ABSTRACTION

The root of the problems with checked exceptions is a conflict with the principle of ab-
straction. Abstraction is an essential concept of software development, regardless of the
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programming paradigm. It is the process of decomposing a large problem into several
smaller and easier problems [20]. Programming logic for solving the large problem is
written in terms of programming logic solving smaller problems. If the latter is modified,
the former will automatically reflect the changes.

In object-oriented programming, the flexibility of abstraction is increased through del-
egation and dynamic binding. The delegator delegates a task to an object, the delegatee,
which can be replaced to obtain another behaviour. This allows many algorithms to be
composed from only a few parts. Most design patterns are based on this principle [8].

Alexander Romanovsky and Bo Sandén [31] argue that “exception handling mechanisms
should correspond to the features the language provides”. But this is clearly not the case
for the exception clause of a method. The relative nature of abstraction conflicts with the
absolute nature of the exception clause. A method can delegate the detection and raising
of exceptions to other methods, but not the specification of the exceptional behaviour.

In order to specify the normal behaviour of the delegator, its postconditions contain
one or more expressions referencing the delegatee, just like its implementation1. These
expressions can be used to obtain the exact contract of a composed algorithm by filling
in the postconditions of the specific delegatee in the postconditions of the delegator. This
is possible because of the relative nature of the abstractions used in the implementation
and the specification. Without this property, a programmer cannot be sure that the specific
behaviour of the delegatee will be reflected by the combined algorithm, making it useless.

Figure 2 illustrates this for class of predicates using the Strategy pattern[8]. The specifi-
cations are written in JML [17]. The evalmethod declares that it can signal any exception
at any time because it is a general purpose method. Specific predicates can narrow the set
of signalled exceptions. The forAll method calculates whether or not all objects of a
given collection satisfy a given predicate; its exact location is not important for this exam-
ple. The specification and the implementation of forAll both contain a reference to the
eval method being applied to the given predicate, ensuring that the result will always be
consistent with the given predicate. The exception clause of forAll, however, declares
that it can signal any exception at any time, even though it will only signal an exception
when the eval method of the given predicate does so.

Figure 1a illustrates the situation. In both figures, the delegator method invokes the del-
egatee method. The thin arrows represent invocations of the delegatee. The thick arrows
represent the propagation of the postconditions and behaviour, which happens in the oppo-
site direction. Figure 1b illustrates the same for the exceptional behaviour. The delegator
signals E1 directly and propagates E2, which is signalled by the delegatee. It is clear that
the absolute nature of the exception clause hides the origin of exception E2; a programmer
cannot be sure that E2 is only signalled by the delegatee.

We will now discuss the problems caused by the absolute nature of exception clauses.

3.1 Reduced Adaptability

The best-known drawback of checked exceptions is their impact on the adaptability of
software [10; 24; 5]. Adding new exceptions to and removing exceptions from a program is
a natural consequence of software evolution, either caused by the addition of functionality
[24; 5], or by the difficulties in predicting all exceptional conditions in advance [29]. Such

1For specifications, this is currently only done for queries/inspectors. Research is being done to allow this for
commands/mutators as well, like in the Z specification language [27].
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(a) Behaviour and normal specification

(b) Exceptional specification

1: The conflict between exception handling and the principle of abstraction.

changes, however, cause a rippling effect along every call chain involving the modified
method. Every method in such a call chain that propagates the new exception must also be
modified.

In his paper introducing exception handling [10], Goodenough already mentions this
effect for adding new checked exceptions, and argues that it is “not entirely wasted effort”.
Indeed, it will reveal all methods requiring modification for dealing with the new exception,
thus increasing robustness as argued in the previous section. But while not entirely wasted,
the effort mostly is.

Usually, methods that do not handle exceptions, but only propagate them, will also prop-
agate the newly added exception, as illustrated by our case study in section 9. Such meth-
ods provide a certain functionality, but are unable to handle exceptions. So their behaviour
has not really changed by adding a new checked exception to their exception clause; they
still do the same work and report all failures. While changes in the implementation and the
postconditions of a method are propagated automatically, changes in the exception clause
of a method must be propagated manually. The former changes take advantage of the rel-
ative nature of abstraction, while the latter change is obstructed by the absolute nature of
current exception clauses. In section 6.2, we will discuss which code modifications make
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public abstract class Predicate {
/*@

@ public behavior
@ post true;
@ signals (Exception) ! isValidElement(object);
@*/

public abstract boolean eval(Object subject) throws Exception;
}
...
/*@

@ public behavior
@ pre collection != null;
@ pre predicate != null;
@ post \result == (\forall Object o;
@ collection.contains(o);
@ predicate.eval(o) == true);
@ signals (Exception) (collection != null) &&
@ (\exists Object o; collection.contains(o);
@ !predicate.isValidElement(o));
@*/

public boolean forAll(Collection collection, Predicate predicate) throws Exception {
...
result = result && predicate.eval(element);
...

}

2: Propagation of exceptions in a strategy pattern.

sense and which do not.
The same problem applies to removing an exception from an exception clause. Although

not enforced by the compiler, a programmer will want to remove the exception from the
exception clauses of all methods that cannot signal it anymore because this avoids the need
to write dummy exception handlers when invoking these methods. The compiler will then
reveal all unnecessary exception handlers. The detection and modification of outdated
exception clauses, however, must be done manually in this scenario.

As a result, programmers often switch to unchecked exceptions [30], leaving room for
unanticipated exceptions at run-time. This happens to such an extent that many program-
ming languages, like Smalltalk, C#[12], C++, Python, and Eiffel, completely omit checked
exceptions.

The example in Figure 3 illustrates the consequences of adding a checked exception to
existing software; it does not show the need for evolution, which is presented in [25; 24].

We have a class of bank accounts with methods to withdraw and deposit money. The
transferTo method is the combination of a withdrawal followed by a deposit. The
underlined exception is not part of the first version of the application. In the next version
of our banking application, a client can only withdraw a limited amount of money every
week. The withdrawmethod is modified, and signals a WeekLimitExceptionwhen
the withdrawal exceeds the week limit. Not only do we need to modify the withdraw
method, but we must also change the exception clause of the transferTo method al-
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public class Account {
public void transferTo(Account other, double amount)

throws SuspiciousDepositException,
NotEnoughMoneyException,
WeekLimitException {

withdraw(amount);
other.deposit(amount);

}
public void withdraw(double amount)

throws NotEnoughMoneyException,
WeekLimitException {...}

public void deposit(double amount)
throws SuspiciousDepositException {...}

}

3: Unnecessary modification of transferTo.

try{
delegatee.execute(args);

}
catch(E1 exc) {

// handle or propagate E1
...

}
catch(E2 exc) {

// dummy exception handler to prevent E2
// from showing up in the exception clause

}

4: A longer notation for delegatee.execute(args).

though it is still just a withdrawal followed by a deposit.

3.2 Loss of Context Information

A programmer often knows that certain checked exceptions cannot be signalled by a
method invocation when delegation is used. If he knows the type of the concrete dele-
gatee that will be used by the delegator, he can eliminate certain checked exceptions based
on the exception clause of the delegatee. The exception handling mechanism, however,
cannot make the same deduction because, as discussed above, the delegator hides the ex-
ception clause of the delegatee.

Consider again the example in Figure 1b. Even if a programmer knows that the concrete
delegatee cannot signal an exception at all, he will have to provide an exception handler
for E2 when invoking the delegator, as shown in Figure 4. He cannot use the context
information about the delegatee to exclude exception E2. If E1 is handled, only the handler
for E2 is useless. But if exception E1 is propagated, this is a very long way to write
delegatee.execute(args).

An alternative approach would be to override the delegator specifically to deal with a
certain type of delegatees, and filter out the checked exceptions in the delegator. But this
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defeats the purpose of the design, providing many composed algorithms without changing
the delegator, and is just as inconvenient.

As software evolves, the inconvenient situation turns into a dangerous one. Suppose
that the delegatee now signals exceptions of type E2. The assumption under which the
dummy exception handler for E2 was valid, is no longer valid. But unless the entire pro-
gram is manually verified, these dummy exception handlers will not be brought to atten-
tion, and exceptions will disappear at run-time. The problem can be alleviated by raising
an unchecked exception in the dummy exception handler, but this exception can only be
detected at run-time, and thus slip unnoticed through the testing phase.

4. ANCHORED EXCEPTION DECLARATIONS

Eiffel has a concept called type anchoring [22], to declare the type of an entity relative
to the type of another entity, the anchor, within its scope. If the type of the anchor is
changed, the type of the other entity automatically follows the change. You can define an
entity relative to another entity using the following syntax :

some entity: like anchor

In this section, we use the anchoring technique to solve the conflict between current
exception clauses and the principle of abstraction. We extend the exception clause of a
method to specify not only what exceptions can be signalled, but also when they can be
signalled.

We had four goals when developing anchored exception declarations. First, anchored
exception declarations must solve the adaptability problem; no unnecessary modifications
of source code should be required when adding or removing checked exceptions from
exception clauses. Second, compile-time safety must be guaranteed. Otherwise the very
essence of using checked exceptions is lost. Third, the solution must be easy to use and
understand by programmers. Finally, our solution must exploit as much type information
as possible. If a programmer can narrow the set of exceptions signalled by a method
invocation, based on static type information, anchored exception declarations must yield
the same result.

4.1 Language simplifications

In order to simplify the formal semantics and the proof of correctness, we put some re-
strictions on the programming language. We use a variant of ClassicJava [7] where the
throws clause and statements are added again. We limit expressions to this, refer-
ences to formal parameters and fields, type names, and method invocations. Type names
will only be valid when used in anchored exception declarations since ClassicJava does
not model static methods and fields. Additionally, a class may not introduce a field with
the same name as a field of one of its superclasses in order to simplify the lookup after
substituting parameters. For methods, ClassicJava already takes care of this by forbidding
syntactic overloading [23].

4.2 The Elements of an Anchored Exception Declaration

The addition of a new concept for specifying the exceptional behaviour of a method re-
quires an extension of the terminology. An exception clause will no longer be a list of
exception types, but a list of exception declarations. Each exception declaration declares
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ExceptionClause:
throws ExceptionDeclaration ( , ExceptionDeclaration)*

ExceptionDeclaration:
AbsoluteExceptionDeclaration
AnchoredExceptionDeclaration

AbsoluteExceptionDeclaration:
Identifier

AnchoredExceptionDeclaration:
like MethodExpression [FilterClause]

FilterClause:
(propagating ( ExceptionList ))?

(blocking ( ExceptionList ))?
ExceptionList:

Identifier ( , ExceptionList)*
MethodExpression:

MethodInvocation allowing type names as expressions

5: A grammar for anchored exception declarations.

what exceptions can be signalled under what circumstances. The exception types in tradi-
tional exception clauses will be called absolute exception declarations from now on. They
declare that a certain type of exceptions can always be signalled.

To solve the conflict between checked exceptions and the principle of abstraction, we in-
troduce anchored exception declarations. Instead of always declaring signalled exceptions
in an absolute manner, a programmer can also declare them relative to another method
using anchored exception declarations. An anchored exception declaration automatically
reflects changes in the exception clause of its anchor.

An anchored exception declaration consists of the keyword like, followed by a method
expression and optionally a filter clause, as shown by the grammar in Figure 5. The method
expression determines to which method the anchored exception declaration is anchored,
and thus the set of exceptions that can be signalled as a result of that exception declaration.
The filter clause can narrow this set by allowing only a fixed set of exceptions to be propa-
gated using a propagating filter, or by allowing everything to be propagated except for
a fixed set of exceptions using a blocking filter.

To anchor the exception clause of a method to that of another method, it is not sufficient
to use only the name of the other method. In order to exploit call-site type information, as
seen in sections 4.5 and 4.6, and to ensure compile-time safety, as seen in section 4.7.4, the
use of a method expression is required.

A method expression can be any method invocation that is valid in the context of the
method header, including the formal parameters of the method. On top of that, type names
can be used as expressions because some subexpressions of the method invocation may
not always be visible outside the method body, or the programmer may want to hide them.
The type name avoids ambiguities in presence of syntactic overloading [23].

The filter clause allows the developer to propagate only a limited set of exceptions using
the propagating keyword, to propagate everything except for a set of exceptions using
the blocking keyword, or a combination of both. The default filter clause – no filter
clause – allows all exceptions of the anchor to be propagated.

Figure 6 shows a few anchored exception declarations. The syntax is chosen such that
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void f() throws like g(), like h(x);

void f(A a) throws like a.g() propagating (E1, E2);

void f() throws like b().g(x) blocking (E1, E2);

void f() throws like A.g(X) propagating (E0) blocking (E1, E2);

6: Anchored exception declarations read like a sentence.

E E T ⇔ ∃X ∈ T : E <: X

E 6E T ⇔ ¬ E E T

T t S= {Type t | t E T ∨ t E S}
= {Type t | ∃X ∈ T : t <: X ∨ ∃Y ∈ S : t <: Y }
= {Type t | ∃X ∈ (T ∪ S) : t <: X}
= {T1, . . . , Tn, S1, . . . , Sm}

T u S= {Type t | t E T ∧ t E S}
= {Type t | ∃X ∈ T : t <: X ∧ ∃Y ∈ S : t <: Y }
= {Type t | t ∈ ((T1 ∪ . . . ∪ Tn) ∩ (S1 ∪ . . . ∪ Sm))}
= {Type t | t ∈ ((T1 ∩ S1) ∪ . . . ∪ (T1 ∩ Sm) ∪ . . .∪

(Tn ∩ S1) ∪ . . . ∪ (Tn ∩ Sm))}
= {(T1 ∩ S1), . . . , (T1 ∩ Sm), . . . , (Tn ∩ S1), . . . , (Tn ∩ Sm)}

Typea ∩ Typeb =











Typea if Typea <: Typeb

Typeb if Typeb <: Typea

∅ otherwise

T − S = {Type t | t E T ∧ t 6E S}

T v S ⇔ ∀ x E T : X E S

7: Operations on sets of types

an anchored exception declaration reads like a sentence.

4.3 Formal notation

We now define a shorter notation for exception declarations for use in formulas. Exception
lists will be represented sets of types. The E operator checks whether or not a type is a
subtype of an element of a such a set, and can be thought of as the ∈ operator for normal
sets. The u,t, and − operator correspond to the ∩, ∪, and \ operators on normal sets, and
the v relation corresponds to the ⊆ relation. The symbol > represents a set containing
every type. The operations are shown in figure 7.
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An absolute exception declaration is represented by a pair of sets of types: (P,B). The
first set contains the types of exceptions that can be signalled, while the second set con-
tains the types that are blocked. An absolute exception declaration E in a program is then
represented by (E, ∅). The second element of the pair will be non-empty for intermediate
results during the expansion process (section 4.5).

An anchored exception declaration like t.m(args) propagating
(P) blocking (B), where P and B are exception lists, is denoted as
like t.m(args) E P 6E B, where P and B are sets of exception types. The de-
fault values for P and B are > and ∅.

An exception clause is denoted as a set of exception declarations.

4.4 Semantics

We now define the semantics of anchored exception declarations by introducting the δ
function, which has two forms. The Υ and Ω functions are defined in section 4.5.

Definition 4.1. The first form of the δ function determines whether or not an exception
clause or declaration allows a checked exception E to be signalled when the parent method
of the exception declaration is invoked by the given method invocation. It adds context
awareness to exception declarations.

—A method, when invoked as t.m(args), is allowed to signal a checked exception E if at
least one of its exception declarations allows E to be signalled.
δ({ED1,. . . , EDn}, t.m(args), E) ⇔

∨i=n

i=1
δ(EDi, t.m(args), E)

—An absolute exception declaration allows a checked exception E to be signalled if it is
explicitly propagated and is not blocked.
δ((P,B), t.m(args), E) ⇔ E E (P − B)

—An anchored exception declaration allows a checked exception E to be signalled if the
exception clause resulting from its expansion after inserting context information allows
E to be signalled.
δ(like ta.ma(argsa) E Pa 6E Ba, t.m(args), E) ⇔
δ(Υ(Ω(like ta.ma(argsa) E Pa 6E Ba, t, args)), E)

Definition 4.2. The second form of the δ function determines the worst-case behaviour
of an exception clause or declaration. It is a short-hand form for the first one when the
target is the parent type of the method and the actual arguments are references to the formal
parameters of the method.

— δ({ED1, . . . , EDn}, E) ⇔
∨i=n

i=1
δ(EDi, E)

— δ((P,B), E) ⇔ E E (P − B)

— δ(like t.m(args) E P 6E B,E) ⇔
δ(Υ(like t.m(args) E P 6E B), E)

The Υ and the Ω functions insert more specific type information into the method expres-
sion of an anchored exception declaration. As a result, it can select a more specific method
and thus reduce the set of exceptions that can be signalled.
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4.5 Exploiting Context Information

Call-site type information is inserted in an anchored exception declaration using a process
called expansion, denoted by Υ, which is performed at compile-time. Expanding an an-
chored exception declaration is the process of cloning the exception clause of the invoked
method and adapting it to include the context information.

The power of expansion depends on the programming language. The more information
can be specialized in subtypes or at a call-site, the more powerful the expansion process
is. Features that increase the power of expansion include covariant return types, generic
parameters, and type anchors.

4.5.1 Substitution. Inserting context information into an exception clause is done us-
ing the Ω function. It substitutes formal parameters and the implicit argument this with
call-site information.

For the assumptions made in this paper, the Ω function is equal to
{val1/par1 . . . , valn/parn, target/this}T . If static methods, syntactic overload-
ing, and overloading of instance variables are allowed, this is no longer the case then
because lookups of instance variables and singatures are influenced by insertion of more
specific type information. In this case, type elaboration can be used to take the static
binding into account, as done in [7]. Of course, this function may only be applied when
okΩ((this, target), (val1, par1), . . . , (valn, parn)) holds. This precondition demands
that the target and actual arguments have the correct type, no parameter is substituted
twice, and all references to this in val1, . . . , valn have the same type.

The definitions for expressions, exception declarations, and exception clauses are shown
in Figure 8a. The <: relation is used to denote subtyping for types and overriding for
methods, the Γ function returns the type of an expression.

Note that the method binding mechanism used in an anchored exception declaration
must be the same as the one used by the programming language for binding method invo-
cations in the implementation. If the method being invoked at run-time does not correspond
to the method resulting from evaluating the method expression, compile-time checks are
useless. Again, the exception handling mechanism must correspond to the features of the
language [31].

4.5.2 Filtering. The Φ function applies the filter clauses, Pnew and Bnew, of an an-
chored exception declaration to an exception clause. The propagated exceptions of an ex-
ception declaration are combined with Pnew using an intersection. The blocked exceptions
are combined with Bnew using a union. The function is shown in Figure 8b

4.5.3 Expansion. The expansion of an anchored exception declaration , performed by
the Υ function, selects the exception clause of the invoked method, done by the ε function,
and applies the Φ and Ω functions to the result. Because the static types of the actual
arguments and the target are subtypes of the formal parameters and the parent type of the
invoked method, a more specific method may be selected. As a result, a number of checked
exceptions may be eliminated. The function is shown in Figure 8c. In the definition, pi is
the formal parameter corresponding to actual argument ai.

4.5.4 Recursive Expansion. The Υrec function gives an upper bound for the types of
checked exceptions that can be signalled by a method invocation, an exception declaration,
or an exception clause. It uses the � operator to determine the types of exceptions sig-
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okΩ((va,1, pa,1) . . . (va,n, pa,n)) =
(

∧i=n

i=1
Γ(va,i) <: Γ(pa,i)

)

∧
(

∧i=n,j=n

i=1,j=1
Γ(this(va,i)) = Γ(this(va,j))

)

∧

(pa,i = pa,j ⇔ i = j)

Ω(e, target, args) = {val1/par1 . . . , valn/parn, pre/this}e
Ω((P,B), target, args) = (P,B)
Ω(like ta.ma(argsa) E Pa 6E Ba, target, args) =

like Ω(ta.ma(argsa), target, args) E Pa 6E Ba

Ω({ED1, . . . , EDn} , target, args) =
{Ω(ED1, target, args), . . . ,Ω(EDn, target, args)}

(a) Substitution

Φ((P,B), Pnew, Bnew) = (P u Pnew, B t Bnew)
Φ(like t.m(args) E P 6E B,Pnew, Bnew) =

like t.m(args) E (P u Pnew) 6E (B t Bnew)

Φ({ED1, . . . , EDn}, P,B) = {Φ(ED1, P,B), . . . ,Φ(EDn, P,B)}

(b) Filtering

Υ(like t.m(a1, . . . , an) E P 6E B) =
Ω(Φ(ε(t.m(a1, . . . , an)), P,B), t, (a1, p1) . . . (an, pn))

Υ(t.m(a1, . . . , an)) = Υ(like t.m(a1, . . . , an) E > 6E ∅)

(c) Expansion

Υrec((P,B)) = P � B
Υrec(like t.m(args) E P 6E B) = Υrec(Υ(like t.m(args) E P 6E B))
Υrec({ED1, . . . , EDn}) = Υrec(ED1) ∪ . . . ∪ Υrec(EDn)
Υrec(t.m(args)) = Υrec(like t.m(args) E > 6E ∅)

(d) Recursive expansion

{T1, . . . , Tn} � {S1, . . . , Sm} =
⋃i=n

i=1
(Ti � {S1, . . . , Sm})

Typea�{S1, . . . , Sn} =
{

∅ if ∃ Typeb ∈ {S1, . . . , Sn} : Typea <: Typeb

{Typea} otherwise

(e) Upper bound of absolute exception declarations

8: Definition of the expansion function.

nalled by absolute exception declarations because they can only appear in real exception
clauses in the form (P, ∅). The � operator calculates the worst case exception types for an
absolute exception declaration by removing propagate types that are completely blocked
and ignoring blocked types that do not completely block a propagated type. To prevent
infinite loops in this process, we need to apply a restriction on the exception clause of a
method, which is presented in section 4.7.2. THe function is shown in Figure 8d.
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public class Account {
public void transferTo(Account other, double amount)

throws like withdraw(amount),
like other.deposit(amount) {

withdraw(amount);
other.deposit(amount);

}
public void withdraw(double amount)

throws NotEnoughMoneyException,
WeekLimitException;

public void deposit(double amount)
throws SuspiciousDepositException;

}
public class UnsuspiciousAccount extends Account {

public void deposit(double amount);
}
public class TimelessAccount extends Account {

public void withdraw(double amount)
throws NotEnoughMoneyException;

}

...
double myAmount = ...
UnsuspiciousAccount unsuspicious = ...
TimelessAccount timeless = ...

timeless.transferTo(unsuspicious, myAmount);
...

9: Class Account using anchored exception declarations.

4.6 Examples

Before we present the rules we impose on anchored exception declarations, we give two
examples to make the reader familiar with them.

4.6.1 Bank Account. Using anchored exception declarations, the code for the sec-
ond version of the bank accounts of Figure 3 would look as shown in Figure 9. We
have now expressed that changes in the exceptional behaviour of this.withdraw
and other.deposit will always be reflected in the set of exceptions signalled by
transferTo. Consequently, the addition of WeekLimitException to withdraw
does not require the modification of transferTo.

Figure 9 also shows two special classes of bank accounts. An
UnsuspiciousAccount will never signal an exception when money is deposited,
while a TimelessAccount does not have a week limit. The bottom of the figure shows
a transfer from a TimelessAccount to an UnsuspiciousAccount.

In order to calculate which checked exceptions can be signalled by the transfer, we will
expand the invocation. After the first expansion step of Υrec, the intermediate exception
clause contains two anchored exception declarations.
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(1) like timeless.withdraw(myAmount)

(2) like unsuspicious.deposit(myAmount)

Evaluating the method expressions will yield the overridden methods of classes
TimelessAccount and UnsuspiciousAccount. The type information known
about the target of the method invocation (timeless) and the first actual argument
(unsuspicious) has allowed a more specialized selection of both methods than a se-
lection based only on the exception clause of Account.transferTo. The benefits
become clear after applying Υrec a last time.

(1) NotEnoughMoneyException

(2) ∅

Expanding like timeless.withdraw(myAmount) only results
in NotEnoughMoneyException since withdraw does not signal
WeekLimitException in class TimelessAccount. Likewise, the expansion
of like unsuspicious.deposit(myAmount) yields an empty set because an
UnsuspiciousAccount will never signal a SuspiciousDepositException
during a deposit. The anchored exception declarations successfully removed all exceptions
that cannot be signalled in the given context.

4.6.2 Strategy Pattern. Figure 10 shows an implementation of a strategy pattern. The
Predicate class has a method eval that verifies whether an object satisfies a certain
condition. It declares that it can signal any exception because it is a general purpose
method. The forAll method implements a universal quantifier. This method also con-
tains Exception in its exception clause because it uses a predicate to perform its job.
Method compatibleWith of class ExceptionClause checks whether or not the
current exception clause is compatible with another one, reusing the algorithm for univer-
sal quantification. As is clear from Figure 10, about half of its implementation is useless
code to prevent Exception from showing up in the exception clause. Additionally, the
dummy exception handler introduces a problem when the compatibleWith method of
class ExceptionDeclaration signals additional checked exceptions after evolution
of the code.

Figure 11 shows the same code using anchored exception declarations. The
template algorithm forAll now declares that all checked exceptions come
from the eval(Object) method. When the method expression like
predicate.eval(Object) is evaluated in the context of the invocation of
forAll, it will select the eval(Object) method of the anonymous inner class, which
only signals NotResolvedException. Therefore no exception handling must be
inserted for filtering exceptions, resulting in more elegant and safe code.

4.7 Restrictions on Anchored Exception Declarations

In this section, we will discuss the restrictions on anchored exception declarations. They
are needed to ensure compile-time safety of anchored exception declarations.

4.7.1 Accessibility Rule. The client of a method must have access to every element of
an anchored exception declaration in order to determine which exceptions to expect when
invoking the method. This is similar to the precondition availability rule of Eiffel [22] and
the accessibility constraints imposed on types used in method signatures in C# [6]. For
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public abstract class Predicate {
public abstract boolean eval(Object o)

throws Exception;
}
public boolean forAll(Collection collection,

Predicate predicate)
throws Exception{...}

}
public class ExceptionClause {

public boolean compatibleWith(
final ExceptionClause other)
throws NotResolvedException {

try {
return ...forAll(getDeclarations(),

new Predicate() {
public boolean eval(Object o) throws

NotResolvedException {
return ((ExceptionDeclaration)o).

compatibleWith(other);
}});

}
catch (NotResolvedException e)
{throw e;}

catch (Exception e)
{throw new Error();}

}
}

10: Algorithm composition, the traditional way.

public boolean forAll(Collection collection,
Predicate predicate)

throws like predicate.eval(Object){...}
}
public class ExceptionClause {

public boolean compatibleWith(
final ExceptionClause other)
throws NotResolvedException {

return ...forAll(getDeclarations(),
new Predicate() {

public boolean eval(Object o) throws
NotResolvedException {

return ((ExceptionDeclaration)o).
compatibleWith(other);

}
});

}
}

11: Algorithm composition using anchored exception declarations.
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example, it is not allowed to use a protected method in an anchored exception declaration
of a public method because not every client may know about the protected method.

RULE 1. All elements of an anchored exception declaration must have at least the level
of accessibility that the declaring method has.

4.7.2 Acyclic Anchor Graph. In order to ensure that we cannot encounter a loop during
the expansion process, we need to apply a restriction on the anchored exception declara-
tions of a method. Using the anchored exception declarations as edges and methods as
nodes, we can define a directed graph, called an anchor graph. For every anchored excep-
tion declaration, an edge is added starting from the parent method to the referenced method
and all methods overriding it. The latter is required because submethods can be selected
due to the insertion of context information.

RULE 2. A program must have an acyclic anchor graph.

This rule can be relaxed at the cost of requiring a whole program analysis. Instead
of constructing a graph for each method, which covers the worst-case scenario, a graph
can be constructed for each method invocation. This is similar to the system-wide check
for polymorphic cat-calls in Eiffel. We chose not to use this relaxation because a whole
program analysis is not appealing.

4.7.3 Useful Anchor Rule. The exception clause of a method may not contain an an-
chored exception declaration that does not declare any checked exception. Such an an-
chored exception declaration is useless, and can only cause confusion. Suppose that after
evolution of the application a checked exception E can be signalled by m . If E can be
signalled by an absolute exception declaration of ECb, the anchored exception declaration
is redundant. Otherwise, it breaks the compatibility between ECa and ECb.

RULE 3.

Υrec(anchor) 6= ∅

4.7.4 Compatibility Rules. An exception clause ECa is compatible with another ex-
ception clause ECb, denoted as ECa � ECb, when ECa never allows a checked exception
that ECb does not allow. For a valid program, the following compatibility relations must
hold. The functions and relations used in these rules will be explained further on.

RULE 4. A method may not signal a checked exception when one of its supermethods
does not allow it.

ma <: mb ⇒ ε(ma) � ε(mb)

RULE 5. The implementation of a method may not signal a checked exception when the
exception clause does not allow it.

¬ m abstract ⇒ IEC(m) � ε(m)

As a result of these rules, the exception clauses of the supermethods act as an upper
bound, while the exception clause defined by the implementation of a method acts as a
lower bound.

We will now discuss compatibility of filter clauses, method expressions, anchored ex-
ception declarations and exception clauses, followed by the definition of the exception
clause defined by the implementation of a method.
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The � relation. We introduce the � relation in order to simplify reasoning about
anchored exception declarations. For compile-safety, it would suffice to require that
δ(ECa, E) ⇒ δ(ECb, E) holds between a method and its supermethods and between
a method body and the exception clause of that method. In a full-blown programming lan-
guage, however, this becomes difficult to reason about because of concepts such as static
and final methods. They allow ECa to be a valid refinement of ECb based on the knowl-
edge that some methods cannot be overridden. Such an analysis is hard for a programmer
to do and would thus cause confusion when a certain type of transition of exception clauses
would be accepted in one part of a program, but rejected in another part because the modi-
fiers of the methods involved are slightly different.

A method expression MEa is compatible with MEb, denoted as MEa � MEb, when
the evaluation of MEa always results in a method that is equal to, or overrides the method
resulting from the evaluation of MEb. Consequently, if MEa � MEb, the method selected
by MEa can never signal an exception that is not allowed by the method selected by MEb

because of rules 4 and 5. The relations are shown in figure 12a. The ∼= relation denotes
that both formal parameters are corresponding formal parameters of overriding or equal
methods.

For absolute exception declarations, the set of exception declared by ABSa must be
a subset of those declared by ABSb. For anchored exception declarations, their method
expressions and their filter clauses must be compatible. The filter clauses follow the same
rule as absolute declarations. Both relations are shown in figure 12b.

The � relation for exception clauses is shown in figure 12c. The first condition (1) is
equivalent to the traditional exception conformance rule for checked exceptions. It ensures
that every checked exception allowed by an absolute declaration of ECa is also allowed
by an absolute declaration of ECb. Removing absolutely declared exceptions is of course
allowed. Note that this rule forbids transforming anchored exception declarations into
absolute declarations since an anchored declaration promises that an exception can only
be signalled by the anchor, which is not the case for an absolute declaration. The set of
checked exceptions for which δ((Pa, Ba), E) is true is Pa � Ba.

The second condition states that anchored exception declarations of ECb may be re-
moved, copied, replaced by an anchored exception declaration that is compatible with
AEb,y (2.a), and that a part of ECb may be replaced by an anchored declaration that
expands to an exception clause that is compatible with ECb (2.b). The set of checked
exceptions for which δ(ANCHORa, E) is true is Υrec(ANCHORa). Note that rule 3
cannot be integrated into condition 2 because it only holds for exception clauses that are
part of the program an not for exception clauses that are the result of an expansion.

Rule 2.b allows replacing a part of exception clause ECb by an anchored exception
declaration if the expansion of that anchored exception declaration is compatible with
ECb. For example, E1, like a().g() may be replaced by like a().f() when
the exception clause of f() is E1, like g(). This is a valid transformation because
it adds no extra exceptions or circumstances under which exceptions can be signalled; the
expansion is compatible with the original exception clause. It does however create an op-
portunity for reducing the circumstances under which the exception can be signalled, by
handling them in method f(). Because of the recursion in this condition, the rule must be
used in conjunction with the requirement for an acyclic anchor graph.

The compatibility rule for exception clauses is related to the rules for refinement of



18 ·

thisa � thisb ⇔ Γ(thisa) <: Γ(thisb)

expression � T ⇔ Γ(expression) <: T

formala � formalb
m

formala ∼= formalb

new A(a1, . . . , an) � new B(b1, . . . , bn)
m

A = B ∧
(

∧i=n

i=1
ai � bi

)

ta.vara � tb.varb ⇔ ta � tb ∧ vara = varb

ta.m(a1, . . . , an) � tb.m(b1, . . . , bn) ⇔ ta � tb ∧
(

∧i=n

i=1
ai � bi

)

(a) Method expressions

(Pa, Ba) � (Pb, Bb) ⇔ (Pa − Ba) v (Pb − Bb)

like ta.m(arga,1, . . . , arga,n) E Pa 6E Ba �
like tb.m(argb,1, . . . , argb,n) E Pb 6E Bb

m
ta.m(arga,1, . . . , arga,n) �

tb.m(argb,1, . . . , argb,n) ∧ (Pa − Ba) v (Pb − Bb)

(b) Exception declarations

ECa � ECb

m
∀(Pa,Ba) ∈ ECa,∀E|δ((Pa, Ba), E) : (1)

∃(Pb, Bb) ∈ ECb : Φ((Pa, Ba), E, ∅) � (Pb, Bb))
∧ ∀anchora ∈ ECa,∀E|δ(anchora, E) : (2)

∃anchorb ∈ ECb : Φ(anchora, E, ∅) � anchorb (2.a)
∨ Φ(Υ(anchora), E, ∅) � ECb) (2.b)

(c) Exception clauses

12: The compatibility relation �.
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Ψ([[throw(e)]]) = {(Γ(e), (Γ(e), ∅))} ∪ Ψ([[e]])

Ψ([[t.m(args)]]) ={(E, like t.m(args) E E)|E ∈ Υrec(t.m(args))}∪
Ψ([[t]]) ∪ Ψ([[args]])

Ψ([[try{tb}catch(E1 e1){h1} . . . catch(En en){hn}finally{fin}]]) =
{(E,ED)|(E,ED) ∈ Ψ([[tb]]) ∧ @x ∈ [1, n] : E <: En} ∪
(

⋃i=n

i=1
Ψ([[hi]])

)

∪ Ψ([[fin]])

strip({(E1, ED1), . . . , (En, EDn)}) = {ED1, . . . , EDn}

IEC(method) = strip(Ψ(body(method)))

13: Calculation of the implementation exception clause.

reuse contracts [35], and the rules for conformance declarations of Contracts [16]. These
rules enforce the substitution principle with respect to the specification of dependencies
between methods. They involve either direct compatibility of elements, like rules 1 and
2.a, or compatibility when taking the transitive closure of dependencies into account, like
rule 2.b.

The Implementation Exception Clause. The implementation exception clause (IEC) of
a method is a calculated exception clause the declares what checked exception can be
signalled by its implementation, and when they can be signalled. It is derived from a set
of pairs containing the type of a checked exception and an exception declaration. The
exception declaration is a declaration that represents a part of the exceptional behaviour
of the implementation, while the exception type is used to filter pairs when an exception
handler is encountered.

The algorithm to compute the IEC is similar to the encounters function presented by
Robillard and Murphy [30], and is shown in Figure 13a. We do not give the definitions for
every statement and expression, but only for the elements that are interesting with respect to
the exception flow. For a checked exception that is raised directly, a pair is added that con-
tains the static type of the exception as its first and second element. For a checked exception
originating from a method invocation, the first element is the static type of the exception,
and the second element is an anchored exception declaration containing the method invoca-
tion and a filter clause propagating only that type of exception. Adding multiple pairs that
propagate only a single exception when encountering a method invocation simplifies the
formula for exception handlers. A try-catch-finally block removes all exception
pairs for which the exception type can be caught by one of its catch blocks. After that,
exception pairs are added based on the code in the catch blocks and the finally block.
Once the set is constructed for the method body, the implementation exception clause can
be obtained by contructing an exception clause that contains the exception declaration of
each pair.

The implementation exception clause specifies the worst-case run-time behaviour of a
method body with respect to checked exceptions. In section 7, we will use this property
to show that a method body will never signal an exception that was not declared by the
exception clause of that method.

Note that the implementation exception clause is not always a valid exception clause
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public class Account {
public void transferTo(Account other, double amount)

throws like withdraw(amount),
like other.deposit(amount) {. . .}

public void withdraw(double amount)
throws NotEnoughMoneyException,

WeekLimitException {. . .}

public void deposit(double amount)
throws SuspiciousDepositException {. . .}

public void myTransaction() throws MyException,
like Account.withdraw(double)

blocking (WeekLimitException),
like Account.deposit(double) {. . .}

}
public class SpecialAccount extends Account {

public Account someAccount() {. . .}
public double someAmount() {. . .}
public void myTransaction() throws MyException,

like transferTo(Account, double)
blocking (WeekLimitException) {

try {
transferTo(someAccount(), someAmount());
//{(NotEnoughMoneyException,
// like transferTo(someAccount(), someAmount())
// propagating (NotEnoughMoneyException))
// (WeekLimitException,
// like transferTo(someAccount(), someAmount())
// propagating (WeekLimitException))
// (SuspiciousDepositException,
// like transferTo(someAccount(), someAmount())
// propagating (SuspiciousDepositException))}
if(...) {

throw new MyException();
// (MyException, MyException)

}
}
catch(WeekLimitException exc)
{... // no exceptions signalled here}

}
}

14: Calculating the implementation exception clause.

since it may violate the accessibility rule.
Figure 14 illustrates the algorithm. The exception pairs are written in the comments

after the corresponding statements. Exception WeekLimitException is caught by a
catch clause that does not signal an exception. Therefore, all pairs within the body of
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the try statement that have WeekLimitException as exception type can be removed.
The resulting set of pairs is:

{(MyException, MyException),
(NotEnoughMoneyException,
like transferTo(someAccount(), someAmount())

propagating (NotEnoughMoneyException)),
(SuspiciousDepositException,
like transferTo(someAccount(), someAmount())

propagating (SuspiciousDepositException))}

The resulting implementation exception clause is:

MyException,
like transferTo(someAccount(), someAmount())

propagating (NotEnoughMoneyException)
like transferTo(someAccount(), someAmount())

propagating (SuspiciousDepositException)

4.8 Generic Parameters

Some of the effect of anchored exception declarations can be obtained by using generic
parameters as exception types. Instead of using an anchored exception declaration, a pro-
grammer could use a generic parameter that is restricted to exception types, e.g. PARAM
extends Exception in Java. This approach, however, is not nearly as elegant and
flexible as using anchored exception declarations. The addition of generic parameters for
exception handling clutters the code since they will appear everywhere in the static typing
of the program. On top of that, the number of types of checked exceptions that a method
can signal cannot exceed the number of generic parameters in its exception clause. As a re-
sult, the programmer could be forced to introduce new abstract exception types and provide
wrappers for existing checked exceptions in order to get his code to compile. Finally, using
this approach, the exceptional behaviour of a method is fixed at the construction time of an
object, whereas an anchored exception declaration can exploit all static type information
of every method invocation.

5. TRANSLATING CAPPUCCINO TO JAVA

We have implemented anchored exception declarations as an extension of ClassicJava,
called Cappuccino. We have done this by adding elements representing anchored exception
declarations to Jnome[34], a metamodel for Java, along with the algorithms necessary for
validation. The extended metamodel reads ClassicJava files containing anchored exception
declarations and checks all the rules they must adhere to.

A translator is provided to transform Cappuccino programs into plain Java programs. It
replaces anchored exception declarations by absolute exception declarations and, if nec-
essary, adds dummy exception handlers for checked exceptions that cannot be signalled.
This is done by performing the following steps for each method.

(1) Transform anchored exception declarations into absolute exception declarations,
which are calculated by the Υrec function.

(2) Remove redundant exception types from the new exception clause. That way, we can
add exception handlers in any order.
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public void transaction() throws NotEnoughMoneyException {

try {

new TimelessAccount().transferTo(
new UnsuspiciousAccount(), 3.0);

}

catch (java.lang.RuntimeException Z)
{throw Z;}

catch (java.lang.Error Z)
{throw Z;}

catch (account.NotEnoughMoneyException Z)
{throw Z;}

catch (java.lang.Throwable Z)
{throw new java.lang.Error();}

}

15: Generated code.

(3) Generate a unique name for the parameter of the catch clauses.

(4) Surround the body of the method with a try block.

(5) Add catch clauses for Error and RuntimeException that propagate the ex-
ception.

(6) For each checked exception declared by the new exception clause, calculate if it can
be signalled by the method body by applying Υrec to the implementation exception
clause. If that is the case, add a catch clause that propagates the exception.

(7) Finally, if Throwable is not already propagated, add a catch clause for
Throwable that raises an Error. For a correct program this code will never be
executed. Raising an Error in this handler can reveal some version conflicts between
two parts of generated code.

Note that this algorithm is not ideal in terms of performance. By adding the exception
handlers this way, every signalled exception will be caught and re-raised for every stack
frame until the relevant handler is encountered.

Figure 15 contains the generated code for a method performing the transfer of money
from a timeless account to an unsuspicious account from section 4.6.1.

6. METHODOLOGICAL DISCUSSION

6.1 Information Hiding

A consequence of the compatibility rule is that for a single anchored exception declaration
like t.m(args) E P 6E B, the implementation may only signal checked exceptions caused
by a compatible expression. But this is a violation of the principle of information hiding
[26]. The anchored exception declaration reveals information about the implementation of
the method, which must directly or indirectly execute t.m(args). So how can anchored
exception declarations fit in the object-oriented programming paradigm, where information
hiding is a crucial concept?

The answer to this question has been given by Helm, Holland, and Gangopadhyay in
[13] and by Steyaert, Lucas, Mens, and D’Hondt in [35]. In order to specify the behaviour
of composable software elements, and thus allow a client to reuse them, it can be necessary
to reveal some of the dependencies between the methods of these elements.
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Remember that for queries, the contract of a delegator often contains expressions refer-
encing the delegatee to allow the derivation of the full contract when the concrete delegatee
is known. If the contract of the interface of the delegatee introduces indeterminism in the
contract of the delegator, and the indeterministic part is relevant for a client of the del-
egator, the link between the delegator and the delegatee cannot be hidden. The contract
of the delegator promises that the postconditions of the delegatee will be part of the re-
sult. But because the indeterminism prevents the exact postconditions from being known
at compile-time, it is impossible for the delegator to satisfy its own contract without eval-
uating the expressions that reference the delegatee.

Consider for example the universal quantification of Figure 10. It is clear that the im-
plementation of forAll must evaluate predicate.eval(Object) either directly or
indirectly for every element of the collection in order to fulfill its contract because it cannot
know the precise postconditions of the eval method of the given predicate in advance. So
by using an anchored exception declaration, no extra information has been revealed.

For the examples like the transferTo method, it is not clear whether or not an-
chored exception declarations should be used. If a transfer of money must always have the
same effect as a combination of a withdrawal and a deposit, the dependencies between the
methods must be made explicit. If on the other hand, withdraw and deposit are just
methods that are reused to implement the desired behaviour of transferTo, and there
is no semantic connection, it is best to hide the dependencies.

From these arguments, we can derive a rule of thumb concerning the use of anchored
exception declarations:

GUIDELINE 1. Use an anchored exception declaration if the link between the delegator
and the delegatee must be known by a client in order to use the delegator. Do not use an
anchored exception declaration if that link must remain hidden for clients.

6.2 Usefulness of Source Code Modifications

As mentioned in section 3.1, some modifications triggered by the addition of a checked
exception make sense, while others do not.

If the modification concerns a method that handles at least one exception, the modifi-
cation makes sense. For such a method, an active decision is taken to propagate some
exceptions, but handle others, and so it is normal that this decision must be repeated when
the exceptional behaviour has changed.

For methods that do not handle exceptions, it depends on whether or not the method al-
ready propagated checked exceptions. If the method did not propagate checked exceptions
before, the modification makes sense. It is not realistic to expect that the exceptional speci-
fication of a method changes from “no checked exceptions” to “some checked exceptions”
automatically. But if the method did signal checked exceptions before and the new checked
exception is simply propagated, the modification is unnecessary. In this case, the method
already propagated all checked exceptions coming from certain method invocations, so it
should not be modified if such an invocation can result in a new checked exception. If the
method must handle the exception, the modification makes sense.

Figure 16 illustrates the addition of a new checked exception for both absolute and an-
chored exception declarations. The new exception is not always propagated to the end
of the chain of anchored exception declarations, such that the situation using anchored
exception declarations will also require the modification of some methods. The anchored
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16: Adding a new checked exception.

exception declarations always reference the next method in the chain. The circles represent
methods, the lines represent chains of method invocations. The big circle in the middle is
the method where the new exception was added. A circle is white if it is not modified, gray
if it is modified and that modification makes sense, and black if it was modified unneces-
sarily. We assume that all anchored exception declarations are in place.

If only absolute exception declarations are used, as in the left figure, the exception must
be propagated manually along the invocation chains until it is handled. The methods that
handle the exception are colored gray; these changes are useful. The modifications that
merely serve to propagate the exception until it can be handled are unnecessary, and thus
colored black. If anchored exception declarations are used, as in the right figure, the excep-
tion automatically propagates to the end of the chain of anchored exception declarations.
For the exceptions that should not reach that point, the programmer can backtrack along
the invocation chain until he arrives at the method that should handle the exception. No
unnecessary modifications must be performed.

7. PROOF OF CORRECTNESS

This section contains the soundness proof of anchored exception declarations. For the
proof, we limit expressions to this, references to formal parameters and class variables,
and method invocations. Additionally, type names may be used as expressions in method
expressions.

7.1 Notation

In addition to the formal notation presented in section 4.3, we will need some extra notation
during the proof.

An actual argument that is used for substitution is represented by a pair containing the
value as the first element, and the corresponding formal parameter as the second element.
actual = (val, par)

For the substitution of parametrs in other parameters that are to be substituted, we write:
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Ω((val, par), pre, args) = (Ω(val, pre, args), par)
Ω((v1, p1) . . . (vn, pn), pre, args) =

(Ω(v1, pre, args), p1) . . . (Ω(vn, pre, args), pn)

7.2 Extension to the � relation

For arguments that are to be substituted, we extend the definition of the � relation.

(vala, parama) � (valb, paramb) ⇔
vala � valb ∧ parama � paramb

(va,1, pa,1) . . . (va,n, pa,n) � (vb,1, pb,1) . . . (vb,n, pb,n) ⇔
(va,1, pa,1) � (vb,1, pb,1) ∧ . . . ∧ (va,n, pa,n) � (vb,n, pb,n)

7.3 Sets of types

We will need the following Lemma for sets of types. The proof is analogous to the proof
for mathematical sets.

LEMMA 7.1.

(Pa − Ba) v (Pb − Bb) ∧ (Pc − Bc) v (Pd − Bd)
⇓

((Pa u Pc) − (Ba t Bc)) v ((Pb u Pd) − (Bb t Bd))

PROOF.

(Pa − Ba) v (Pb − Bb) ∧ (Pc − Bc) v (Pd − Bd)
m (definitions of v and −)

∀x : ((x E Pa ∧ x 6E Ba) ⇒ (x E Pb ∧ x 6E Bb)) ∧
((x E Pc ∧ x 6E Bc) ⇒ (x E Pd ∧ x 6E Bd))

⇓
∀x : (x E Pa ∧ x 6E Ba ∧ x E Pc ∧ x 6E Bc) ⇒

(x E Pb ∧ x 6E Bb ∧ x E Pd ∧ x 6E Bd)
m (definitions of u and t)

∀x : (x E (Pa u Pc) ∧ x 6E (Ba t Bc)) ⇒ (x E (Pb u Pd) ∧ x 6E (Bc t Bd))
m (definitions of v and −)

((Pa u Pc) − (Ba t Bc)) v ((Pb u Pd) − (Bb t Bd))

7.4 Properties of Φ and Ω

In this section we prove some properties about the Φ and Ω functions. Specifically, we will
prove that under certain conditions f ◦ g is equivalent to g ◦ f , possibly after modifying
the arguments.

The first lemma states that Φ and Ω may always be swapped when the arguments of Ω
are valid. The function this(x) returns the implicit parameter this that is in the scope of
the program element x.
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LEMMA 7.2.

okΩ(args, (pre, this(EC))
⇓

Φ(Ω(EC, pre, args), P,B) = Ω(Φ(EC,P,B), pre, args)

PROOF. Since an exception clause is a list of exception declarations, and the Φ and Ω
functions respectively apply Φ and Ω to the exception declarations, it suffices to prove that:

Φ(Ω(ED, pre, args), P,B) = Ω(Φ(ED,P,B), pre, args)

(1) (Px, Bx)

Φ(Ω((Px, Bx), pre, args), P,B) = Ω(Φ((Px, Bx), P,B), pre, args)
m (definition of Ω and Φ)

Φ((Px, Bx), P,B) = Ω((Px u P,Bx t B), pre, args)
m (definition of Ω)

Φ((Px, Bx), P,B) = (Px u P,Bx t B)
m (definition of Φ)

true

(2) like tx.mx(argsx) E Px 6E Bx

Φ(Ω(like tx.mx(argsx) E Px 6E Bx, pre, args), P,B) =
Ω(Φ(like tx.mx(argsx) E Px 6E Bx, P,B), pre, args)

m (definition of Ω and Φ)
Φ(like Ω(tx.mx(argsx), pre, args) E Px 6E Bx, P,B) =
Ω(like tx.mx(argsx) E (Px u P ) 6E (Bx t B), pre, args)

m (definition of Ω and Φ)
like Ω(tx.mx(argsx), pre, args) E (Pa u P ) 6E (Ba t B) =
like Ω(tx.mx(argsx), pre, args) E (Pa u P ) 6E (Ba t B)

The second lemma states that if you perform two consecutive substitutions on an expres-
sion, that is equivalent to performing the last substitution on that actual arguments of the
first substitution, and then applying the first substitution.

LEMMA 7.3.

okΩ(argsa, (prea, this(expr))) ∧ okΩ(argsb, (preb, this(prea))))
∀formal ∈ expr : formal ∈ argsa

⇓
Ω(Ω(expr, prea, argsa), preb, argsb) =

Ω(expr,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

PROOF.

(1) this

Ω(Ω(this, prea, argsa), preb, argsb) =
Ω(this,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(prea, preb, argsb) = Ω(prea, preb, argsb)
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(2) typeName

Ω(Ω(typeName, prea, argsa), preb, argsb) =
Ω(typeName,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(typeName, preb, argsb) = typeName

m (definition of Ω)
typeName = typeName

(3) formal: because of the precondition, formal = pari for exactly one (vali, pari) in
argsa.

Ω(Ω(formal, prea, argsa), preb, argsb) =
Ω(formal,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(vali, preb, argsb) = Ω(vali, preb, argsb)

(4) new C(a1, . . . , an)

Ω(Ω(new C(a1, . . . , an), prea, argsa), preb, argsb) =
Ω(new C(a1, . . . , an),Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(new C(Ω(a1, prea, argsa), . . . ,Ω(an, prea, argsa)), preb, argsb) =

new C(Ω(a1,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)), . . . ,
Ω(an,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)))

m (definition of Ω)
new C(Ω(Ω(a1, prea, argsa), preb, argsb), . . . ,

Ω(Ω(an, prea, argsa), preb, argsb)) =
new C(Ω(a1,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)), . . . ,

Ω(an,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)))
m (induction on finite expression tree)

true

(5) t.var

Ω(Ω((t.var, envvar), prea, argsa), preb, argsb) =
Ω((t.var, envvar),Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω((Ω(t, prea, argsa).var, envvar), preb, argsb) =

(Ω(t,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)).var, envvar)
m (definition of Ω)

(Ω(Ω(t, prea, argsa), preb, argsb).var, envvar) =
(Ω(t,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)).var, envvar)

m (definition of Ω)
Ω(Ω(t, prea, argsa), preb, argsb) =

Ω(t,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))
m (induction on finite expression tree)

true



28 ·

(6) t.m(a1, . . . , an)

Ω(Ω(t.m(a1, . . . , an), prea, argsa), preb, argsb) =
Ω(t.m(a1, . . . , an),Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(Ω(t, prea, argsa).m(Ω(a1, prea, argsa), . . . ,

Ω(an, prea, argsa)), preb, argsb) =
Ω(t,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)).m(

Ω(a1,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)), . . . ,
Ω(an,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)))

m (definition of Ω)
Ω(Ω(t, prea, argsa), preb, argsb).m(

Ω(Ω(a1, prea, argsa), preb, argsb), . . . ,
Ω(Ω(an, prea, argsa), preb, argsb)) =

Ω(t,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)).m(
Ω(a1,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)), . . . ,

Ω(an,Ω(prea, preb, argsb),Ω(argsa, preb, argsb)))
m (induction on finite expression tree)

true

The same property holds for applying two consecutive substitutions on an exception
clause.

LEMMA 7.4.

okΩ(argsa, (prea, this(EC))) ∧ okΩ(argsb, (preb, this(prea))))
∀formal ∈ EC : formal ∈ argsa

⇓
Ω(Ω(EC, prea, argsa), preb, argsb) =

Ω(EC,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

PROOF. Since an exception clause is a list of exception declarations, and the Ω function
applies Ω to the exception declarations, it suffices to prove that:

Ω(Ω(ED, prea, argsa), preb, argsb) =
Ω(ED,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

(1) (P,B)

Ω(Ω((P,B), prea, argsa), preb, argsb) =
Ω((P,B),Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω((P,B), preb, argsb) = (P,B)

m (definition of Ω)
(P,B) = (P,B)
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(2) like t.m(args) E P 6E B

Ω(Ω(like t.m(args) E P 6E B, prea, argsa), preb, argsb) =
Ω(like t.m(args) E P 6E B,Ω(prea, preb, argsb),Ω(argsa, preb, argsb))

m (definition of Ω)
Ω(like Ω(t.m(args), prea, argsa) E P 6E B, preb, argsb) =

like Ω(t.m(args),Ω(prea, preb, argsb),Ω(argsa, preb, argsb)) E P 6E B
m (definition of Ω)

like Ω(Ω(t.m(args), prea, argsa), preb, argsb) =E P 6E B
like Ω(t.m(args),Ω(prea, preb, argsb),Ω(argsa, preb, argsb)) E P 6E B

m (Lemma7.3)
true

7.5 Properties of the δ Function

Filtering an exception declaration to only allow checked exceptions of type E to pass has
no effect on whether or not E is allowed or not.

LEMMA 7.5.

δ(ED,E) ⇔ δ(Φ(ED,E, ∅), E)

PROOF.

(1) (P,B)

δ((P,B), E) ⇔ δ(Φ((P,B), E, ∅), E)
m (definition of δ)

E E (P − B) ⇔ E E ((P u E) − B)
m

true

(2) ANCHOR: proven by induction on Lemma 7.6. This induction will end in absolute
exception declarations for which the proof is given in the first part of this lemma.

δ(Φ(ANCHOR,E, ∅), E) ⇔ δ(Υ(Φ(ANCHOR,E, ∅)), E)
⇔ δ(Φ(Υ(ANCHOR), E, ∅), E)
⇔ δ(Υ(ANCHOR,E))
⇔ δ(ANCHOR,E)

The same property holds for exception clauses.

LEMMA 7.6.

δ(EC,E) ⇔ δ(Φ(EC,E, ∅), E)

PROOF.

δ(Φ(EC,E, ∅), E) ⇔ δ(Φ(ED1, E, ∅), E) ∨ . . . ∨ δ(Φ(EDn, E, ∅), E)
m (induction on Lemma 7.5)

δ(Φ(EC,E, ∅), E) ⇔ δ(ED1, E) ∨ . . . ∨ δ(EDn, E)
m δ(Φ(EC,E, ∅), E) ⇔ δ(EC,E)
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7.6 Properties of the � relation

LEMMA 7.7. If expra is compatible with exprb, the type of expra is conform to the
type of exprb.

expra � exprb ⇒ Γ(expra) <: Γ(exprb)

PROOF. For this, constructor invocations, and type names, the lemma directly from the
definition. For formal parameters, it follows from the definition because we only allow
invariant formal parameters. We now prove the fifth and the sixth cases.

(5) t.var

targeta.vara � targetb.varb ⇔ targeta � targetb ∧ vara = varb

⇓
Γ(targeta.vara) = Γ(targetb.varb)

(6) t.m(args)

Γ(ta.ma(a1, . . . , an)) <: Γ(tb.mb(b1, . . . , bn))
m

returnType(method(ta.ma(a1, . . . , an))) <:
returnType(method(tb.mb(b1, . . . , bn)))

m (covariant return types)
method(ta.ma(a1, . . . , an)) <: method(tb.mb(b1, . . . , bn))
m (dynamic binding and invariant argument types)
Γ(ta) <: Γ(tb) ∧ Γ(a1) <: Γ(b1) ∧ . . . ∧ Γ(an) <: Γ(bn)

⇑
ta � tb ∧ a1 � b1 ∧ . . . ∧ an � bn

This last case is the induction step of the proof for method invocations. Because a
Typeable is a finite tree and a method invocation always has a target, as required by
the assumptions, the other cases serve as base cases, which have been proven.

LEMMA 7.8. If anchored exception declaration anchora is compatible with anchorb,
then the method referenced by anchora will always be conform to the method referenced
by anchorb.

anchora � anchorb ⇒ method(anchora) <: method(anchorb)

PROOF. Because of lemma 7.7, the types of the target and the actual arguments of
anchora will always be conform to the corresponding types of anchorb. Consequently,
because we do no allow syntactic overloading and require parameter types to be invariant,
anchora will always reference a method conform to the method referenced by anchorb.

7.7 Overview of Dependencies

This section gives an overview of the dependencies in the proofs of Theorems 7.13, 7.17,
and 7.22, and explains why the inductions that are used in their proofs will always end.
This is also explained in the proofs themselves. This section merely serves to clarify the
reasoning.
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7.13

7.9 7.11 7.12

7.17

7.14 7.15 7.16

7.22

7.18 7.20 7.21

17: Dependency graph for Theorems 7.13, 7.17, and 7.22.

Each arrow represents a dependency. The solid arrows represent dependencies that apply
the target lemma or theorem directly to the current exception clause or a part of it. The
dotted arrows represent dependencies for which the target lemma or theorem is applied
after following an anchored exception declaration. In every lemma or theorem, the anchor
that is followed is the one with index a, and it will always be handed to the next theorem or
lemma with index a. Because no loop can be made in the dependency graph without using
a dotted arrow, the induction process follows a path in the expansion graph of an exception
clause. Since this graph contains no cycles, the induction will always end.

7.8 The � relation is transitive

7.8.1 Absolute Exception Declarations

LEMMA 7.9.

Φ((Pa, Ba), E, ∅) � (Pb, Bb) ∧ Φ((Pb, Bb), E, ∅) � (Pc, Bc)
⇓

Φ((Pa, Ba), E, ∅) � (Pc, Bc)

PROOF.

Φ((Pa, Ba), E, ∅) � (Pb, Bb)
⇓

((Pa u E) − Ba) v (Pb − Bb)
⇓

((Pa u E) − Ba) v ((Pb u E) − Bb)
⇓ ((Pb u E) − Bb) v (Pc − Bc)
((Pa u E) − Ba) v (Pc − Bc)

The transitivity of the v relation follows straightforward from its definition.

7.8.2 Method expressions

LEMMA 7.10.

expra � exprb ∧ exprb � exprc

⇓
expra � exprc

PROOF. From the definition of � for expressions, it follows that the form of exprc

dictates the form of expra and exprb. Only a type name allows a and b to be of a different
form.
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(1) thisa, thisb, thisc: follows directly from the transitivity of the subtyping (<:) rela-
tion.

(2) expra, exprb, typec: follows from Lemma 7.7 and the transitivity of the subtyping
(<:) relation.

(3) formala, formalb, formalc: follows directly from the definition.

(4) new C(args): follows from the definition and induction on this lemma.

(5) ta.vara, tb.varb, tc.varc: follows from the definition and induction on this lemma.

(6) ta.m(argsa), tb.m(argsb), tc.m(argsc): follows from the definition and induction
on this lemma.

7.8.3 Anchored Exception Declarations.

Directly compatibility

LEMMA 7.11.

Φ(anchora, E, ∅) � anchorb ∧ Φ(anchorb, E, ∅) � anchorc

⇓
Φ(anchora, E, ∅) � anchorc

PROOF. This lemma follows directly from Lemma 7.10 which proves transitivity for the
condition on the method expressions, and the transitivity of the v relation which proves
transitivity for the filter clauses.

Both direct compatibility and compatibility after expansion

LEMMA 7.12.

Φ(anchora, E, ∅) � anchorb ∧ Φ(Υ(anchorb), E, ∅) � ECc

⇓
Φ(Υ(anchora), E, ∅) � ECc

PROOF. Let AEDa = like ta.m(argsa) E Pa 6E Ba and AEDb =
like tb.m(argsb) E Pb 6E Bb.

Φ(anchora, E, ∅) � anchorb

⇓ (Lemma 7.15)
Φ(anchora, E, ∅) � Φ(anchorb, E, ∅)
⇓ (Lemma 7.8 and rule @@@@@@@)

ε(Φ(anchora, E, ∅)) � ε(Φ(anchorb, E, ∅))
⇓ (induction on Theorem 7.17)

Φ(ε(Φ(anchora, E, ∅)), Pa, Ba) � Φ(ε(Φ(anchorb, E, ∅)), Pb, Bb)
⇓ (induction on Theorem 7.22)

Ω(Φ(ε(Φ(anchora, E, ∅)), Pa, Ba), ta, argsa) �
Ω(Φ(ε(Φ(anchorb, E, ∅)), Pb, Bb), tb, argsb)

⇓ (definition of Υ and Lemma 7.2)
Φ(Υ(anchora), E, ∅) � Φ(Υ(anchorb), E, ∅)

(induction on Theorem 7.13)
Φ(Υ(anchora), E, ∅) � ECc
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The inductions on Theorems 7.17, 7.22, and 7.13 will end because they all go back to
Theorem 7.13 after performing an expansion. The no-loops rule ensures that every branch
eventually ends up in Lemmas 7.9 or 7.11.

7.8.4 Exception Clauses

THEOREM 7.13. The � relation for exception clauses is transitive.

ECa � ECb ∧ ECb � ECc ⇒ ECa � ECc

PROOF. We must prove that:




∀(Pa, Ba)∈ ECa,∀E, δ((Pa, Ba), E) :
∃(Pc, Bc)∈ ECc :

Φ((Pa, Ba), E, ∅) � (Pc, Bc)



∧





∀ANCHORa∈ ECa,∀E : δ(ANCHORa, E) :
(∃ANCHORc ∈ ECc : (Φ(ANCHORa, E, ∅) � ANCHORc∨

Φ(Υ(ANCHORa), E, ∅) � ECc))





The case for absolute exception declarations is proven by Lemma 7.9. For anchored
exception declarations of ECa that are directly compatible with an anchored exception
declaration of ECb, the proof is given by Lemmas 7.11 and 7.12. For the case where
Υ(AEDa) � ECb, we apply induction on this theorem. Because of the no-loops rule and
because an expansion is done between every two consecutive encounters of this theorem
or the anchor is followed without insering context information, this induction will end in
the first case (Lemma 7.9) or the second case (Lemma 7.12).

7.9 Φ is monotone

The Φ function maintains the order between two exception clauses or exception declara-
tions when the same types are filtered from both. It also maintains the order when the
smaller clause or declaration is filtered with stronger arguments (allowing less types to be
propagated and blocking more types).

7.9.1 Absolute Exception Declarations

LEMMA 7.14.

(Pc − Bc) v (Pd − Bd) ∧ Φ((Pa, Ba), E, ∅) � (Pb, Bb)
m

Φ(Φ((Pa, Ba), Pc, Bc), E, ∅) � Φ((Pb, Bb), Pd, Bd)

PROOF.

Φ(Φ((Pa, Ba), Pc, Bc), E, ∅) � Φ((Pb, Bb), Pd, Bd)
m (definition of Φ)

(Pa u (Pc u E), Ba t Bc) � (Pb u Pd, Bb t Bd)
m (definition of �)

(((Pa u E) u Pc) − (Ba t Bc)) v ((Pb u Pd) − (Bb t Bd))
⇑ (Lemma 7.1)

(Pa − Ba) v (Pb − Bb) ∧ (Pc − Bc) v (Pd − Bd)
m (definition of �)

(Pa u E,Ba) � (Pb, Bb) ∧ (Pc − Bc) v (Pd − Bd)
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7.9.2 Anchored Exception Declarations.

Direct compatibility

LEMMA 7.15.

Φ(AEDa, E, ∅) � AEDb ∧ (Pc − Bc) v (Pd − Bd)
⇓

Φ(Φ(AEDa, Pc, Bc), E, ∅) � Φ(AEDb, Pd, Bd)

PROOF.

like ta.ma(argsa) E (Pa u E) 6E Ba � like tb.mb(argsb) E Pb 6E Bb) ∧
(Pc − Bc) v (Pd − Bd)
m (definition of �)

ta.ma(argsa) � tb.mb(argsb) ∧
((Pa u E) − Ba) v (Pb − Bb) ∧ (Pc − Bc) v (Pd − Bd)

⇓ (lemma 7.1)
ta.ma(argsa) � tb.mb(argsb) ∧

(((Pa u E) u Pc) − (Ba t Bc)) v ((Pb u Pd) − (Bb t Bd))
m (definitions of � and t)

like ta.ma(argsa) E (Pa u E u Pc) 6E (Ba t E t Bc) �
like tb.mb(argsb) E (Pb u Pd) 6E (Bb t Bd)

m (definition of Φ)
Φ(Φ(AEDa, Pc, Bc), E, ∅) � Φ(AEDb, Pd, Bd)

Compatibility After Expansion

LEMMA 7.16.

Φ(Υ(anchor), E, ∅) � ECb ∧ (Pa − Ba) v (Pb − Bb)
⇓

Φ(Υ(Φ(anchor, Pa, Ba)), E, ∅) � Φ(ECb, Pb, Bb)

PROOF. We prove this using induction on Theorem 7.17. We expand the anchored ex-
ception declaration one level and assume that Theorem 7.17 holds for the resulting excep-
tion clause and ECB . The exception clause resulting from the expansion is the exception
clause of the method referenced by AED, or one of its submethods, with context informa-
tion inserted. Because of the no-loops rule, the recursion must end in methods of which
the exception clauses contain no anchored exception declarations. These will provide the
base case.

—Induction step
The preconditions of Theorem 7.17 follow directly from the preconditions of this
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lemma.

Φ(Υ(anchor), E, ∅) � ECb

⇓ (induction on Theorem 7.17)
Φ(Φ(Υ(anchor), E, ∅), Pa, Ba) � Φ(ECb, Pb, Bb)

⇓ (induction on Theorem 7.13)




Φ(Υ(Φ(anchor, Pa, Ba)), E, ∅) � Φ(Φ(Υ(anchor), E, ∅), Pa, Ba)
⇓

Φ(Υ(Φ(anchor, Pa, Ba)), E, ∅) � Φ(ECb, Pb, Bb)





As explained in the proof of Theorem 7.13 the transitivity property of � is indirectly
based on this lemma. Because of the expansion done in this lemma and the no-loops
rule, the induction must end. On this side, it will end in either Lemma 7.14 or 7.15. Now
we only need to prove the left-hand side of the last implication.

anchor = like t.m(args) E P 6E B
⇓

Φ(anchor, Pa, Ba) = like t.m(args) E (P u Pa) 6E (B t Ba)

Φ(Υ(Φ(anchor, Pa, Ba)), E, ∅) � Φ(Φ(Υ(anchor), E, ∅), Pa, Ba)
m (definition of Υ and Φ)

Φ(Ω(Φ(ε(Φ(anchor, Pa, Ba)), (P u Pa), (B t Ba)), t, args), E, ∅) �
Φ(Ω(Φ(ε(anchor), P,B), t, args), (Pa u E), Ba)

Because Φ does not alter the method expression, it does not have any effect on the ε
function.

m
Φ(Ω(Φ(ε(anchor), (P u Pa), (B t Ba)), t, args), E, ∅) �

Φ(Ω(Φ(ε(anchor), P,B), t, args), (Pa u E), Ba)
m (Lemma 7.2)

Ω(Φ(Φ(ε(anchor), (P u Pa), (B t Ba)), E, ∅), t, args) �
Ω(Φ(Φ(ε(anchor), P,B), (Pa u E), Ba), t, args)

m (definitions of Φ,t and u)
Ω(Φ(ε(anchor), (P u Pa u E), (B t Ba)), t, args) �
Ω(Φ(ε(anchor), (P u Pa u E), (B t Ba)), t, args)

m (definition of �)
true

—For the base case, we need to prove Theorem 7.17 when ε(anchor) contains no anchored
exception declarations. Since ε(anchor) only contains absolute exception declarations,
the last two conditions in the proof of Theorem 7.17 disappear. The remaining condition
is proven by Lemma 7.14.

7.9.3 Exception Clauses

THEOREM 7.17.

(Pc − Bc) v (Pd − Bd) ∧ ECa � ECb

⇓
Φ(ECa, Pc, Bc) � Φ(ECb, Pd, Bd)
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PROOF.

Φ(ECa, Pc, Bc) � Φ(ECb, Pd, Bd)
m (definition of �)





























∀Φ((Pa, Ba), Pc, Bc) ∈ Φ(ECa, Pc, Bc),∀E, δ(Φ((Pa, Ba), Pc, Bc), E) :
∃Φ((Pb, Bb), Pd, Bd) ∈ Φ(ECb, Pd, Bd) :

Φ(Φ((Pa, Ba), Pc, Bc), E, ∅) � Φ((Pb, Bb), Pd, Bd)





∧








∀Φ(ANCHORa, Pc, Bc) ∈ Φ(ECa, Pc, Bc),∀E : δ(Φ(ANCHORa, Pc, Bc), E) :
(∃Φ(ANCHORb, Pd, Bd) ∈ Φ(ECb, Pd, Bd) :

(Φ(Φ(ANCHORa, Pc, Bc), E, ∅) � Φ(ANCHORb, Pd, Bd) ∨
Φ(Υ(Φ(ANCHORa, Pc, Bc)), E, ∅) � Φ(ECb, Pd, Bd)))

































Let ABSa, AEDa ∈ ECa and ABSb, AEDb ∈ ECb. From Lemmas 7.14, 7.15, 7.25,
and 7.26, we know that δ(Φ(ED,Pc, Bc), E) ⇒ δ(ED,E), so if the left-hand side is true,
we know that the corresponding condition in ECa � ECb must be true and can be used as
a precondition.

⇑ (ECa � ECb)








































(Pc − Bc) v (Pd − Bd) ∧ Φ(ABSa, E, ∅) � ABSb

⇓
Φ(Φ(ABSa, Pc, Bc), E, ∅) � Φ(ABSb, Pd, Bd)





∧




(Pc − Bc) v (Pd − Bd) ∧ Φ(AEDa, E, ∅) � AEDb

⇓
Φ(Φ(AEDa, Pc, Bc), E, ∅) � Φ(AEDb, Pd, Bd)





∧




(Pc − Bc) v (Pd − Bd) ∧ Φ(Υ(AEDa), E, ∅) � ECb

⇓
Φ(Υ(Φ(AEDa, Pc, Bc)), E, ∅) � Φ(ECb, Pd, Bd)









































m
Lemma 7.14 ∧ Lemma 7.15 ∧ Lemma 7.16

7.10 Ω is monotone

In this section we prove the same property for the Ω function.

7.10.1 Absolute Exception Declarations

LEMMA 7.18.

Φ((Pa, Ba), E, ∅) � (Pb, Bb)
⇓

Φ(Ω((Pa, Ba), prea, a1 . . . an), E, ∅) � Ω((Pb, Bb), preb, b1 . . . bn)
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PROOF.

Φ(Ω((Pa, Ba), prea, a1 . . . an), E, ∅) � Ω((Pb, Bb), preb, b1 . . . bn)
m (definition of Ω)

Φ((Pa, Ba), E, ∅) � (Pb, Bb)

7.10.2 Method Expressions

LEMMA 7.19.

expra � exprb ∧ prea � preb ∧ argsa � argsb∧
okΩ(argsa, (prea, this(expra))) ∧ okΩ(argsb, (preb, this(exprb)))

⇓
Ω(expra, prea, argsa) � Ω(exprb, preb, argsb)

PROOF. Let argsa = a1 . . . an and argsb = b1 . . . bn.

(1) this

Ω(thisa, prea, a1 . . . an) � Ω(thisb, preb, b1 . . . bn)
m (definition of Ω)

prea � preb

(2) type

Ω(typea, prea, a1 . . . an) � Ω(typeb, preb, b1 . . . bn)
m (definition of Ω)

typea � typeb

(3) formal

Ω(formala, prea, (va,1, pa,1) . . . (va,n, pa,n)) �
Ω(formalb, preb, (vb,1, pb,1) . . . (vb,n, pb,n))

(a) formala = pa,i

Because of the definition of the � relation and the given assumptions, formalb =
pb,i.

va,i � vb,i

(b) formala 6= pa,i

Because of the definition of the � relation and the given assumptions, formalb 6=
pb,i.

formala � formalb

(4) new C(args)

Ω(new C(argsa), prea, a1 . . . an) � Ω(new C(argsb), preb, b1 . . . bn)
m (definition of Ω)

Ω(argsa, prea, a1 . . . an) � Ω(argsb, preb, b1 . . . bn)
m (induction on finite expression tree)

true
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(5) t.var

Ω(ta.vara, prea, a1 . . . an) � Ω(tb.varb, preb, b1 . . . bn)
m (definition of Ω)

Ω(ta, prea, a1 . . . an).vara � Ω(tb, preb, b1 . . . bn).varb

m (definition of �)
Ω(ta, prea, a1 . . . an) � Ω(tb, preb, b1 . . . bn) ∧ vara � varb

m (induction on finite expression tree)
true

(6) t.m(args)

Ω(ta.m(arga,1, . . . , arga,n), prea, a1 . . . an) �
Ω(tb.m(argb,1, . . . , argb,n), preb, b1 . . . bn)

m (definition of Ω)
Ω(ta, prea, a1 . . . an).m(Ω(arga,1, prea, a1 . . . an), . . .

,Ω(arga,n, prea, a1 . . . an)) �
Ω(tb, preb, b1 . . . bn).m(Ω(argb,1, preb, b1 . . . bn), . . .

,Ω(argb,n, preb, b1 . . . bn))
m (definition of �)

Ω(ta, prea, a1 . . . an) � Ω(tb, preb, b1 . . . bn)∧
Ω(arga,1, prea, a1 . . . an) � Ω(argb,1, preb, b1 . . . bn) ∧ . . .∧

Ω(arga,n, prea, a1 . . . an) � Ω(argb,n, preb, b1 . . . bn)
m (induction on finite expression tree)

true

7.10.3 Anchored Exception Declarations.

Direct Compatibility

LEMMA 7.20.

prea � preb ∧ argsa � argsb ∧ Φ(anchora, E, ∅) � anchorb

okΩ(argsa, (prea, this(anchora))) ∧ okΩ(argsb, (preb, this(anchorb)))
⇓

Φ(Ω(anchora, prea, argsa), E, ∅) � Ω(anchorb, preb, argsb)

PROOF. Let anchora = like ta.ma(a1, . . . , an) E Pa 6E Ba, and let anchorb =
like tb.mb(b1, . . . , bn) E Pb 6E Bb.

Φ(Ω(anchora, prea, argsa), E, ∅) � Ω(anchorb, preb, argsb)
m

like Ω(ta.ma(a1 . . . an), prea, argsa) E (Pa u E) 6E Ba �
like Ω(tb.ma(b1 . . . bn), preb, argsb) E Pb 6E Bb

m (definition of �)
Ω(ta.ma(a1 . . . an), prea, argsa) � Ω(tb.mb(b1 . . . bn), preb, argsb) ∧

((Pa u E) − Ba) v (Pb − Bb)
⇑ (Lemma 7.19 and preconditions)

((Pa u E) − Ba) v (Pb − Bb)
m (Φ(anchora, E, ∅) � anchorb)

true



· 39

Compatibility After Expansion

LEMMA 7.21. Let anchor = like t.m(arg1, . . . , argm).

prea � preb ∧ argsa � argsb ∧ Φ(Υ(anchor), E, ∅) � ECb∧
okΩ(argsa, (prea, this(anchor))) ∧ okΩ(argsb, (preb, this(ECb)))

⇓
Φ(Υ(Ω(anchor, prea, argsa)), E, ∅) � Ω(ECb, preb, argsb)

PROOF. We prove the lemma using induction on Theorems 7.17 and 7.22. We expand
the anchored exception declaration one level, or go to the exception clause of a submethod
of the method referenced by anchor, and assume that the lemmas hold for the result-
ing exception clause and ECB . Because of the no-loops rule, the restriction to finite
programs, and because these lemmas themselves only perform further expansions, this
induction must end in methods whose exception clauses contain no anchored exception
declarations. These will provide the base case.

—Induction step

Before we perform the induction on Υ(anchor) and ECb, we need to verify that the pre-
condition of Theorem 7.22 is satisfied. The first three preconditions follow directly from
the preconditions of this lemma. The fourth precondition is satisfied because the type
of this in Υ(anchor) is the same as the type of this in anchor. The last preconditions
follow directly from the preconditions of this lemma.

Φ(Υ(anchor), E, ∅) � ECb

⇓ (induction on Theorem 7.22)
Ω(Φ(Υ(anchor), E, ∅), prea, argsa) � Ω(ECb, preb, argsb)

⇓ (induction on Theorem 7.13)








Φ(Υ(Ω(anchor, prea, argsa)), E, ∅) �
Ω(Φ(Υ(anchor), E, ∅), prea, argsa)

⇓
Φ(Υ(Ω(anchor, prea, argsa)), E, ∅) � Ω(ECb, preb, argsb)









As explained in the proof of Theorem 7.13 the transitivity property of � is indirectly
based on this lemma. Because of the expansion done in this lemma and the no-loops
rule, the induction must end. On this side, it will end in either Lemma 7.18 or 7.20. Now
we only need to prove the left-hand side of the last implication. From the definitions of
Ω and Ω, we know that:

Ω(anchor, prea, argsa) = like Ω(t, prea, argsa).m(Ω(arg1, prea, argsa),
. . . ,Ω(argm, prea, argsa)) E P 6E B

The actual arguments arg1, . . . , argm are bound respectively to formal parameters
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par1, . . . parm. As a result, we can prove the induction step as follows:

Φ(Υ(Ω(anchor, prea, argsa)), E, ∅) �
Ω(Φ(Υ(anchor), E, ∅), prea, argsa)

m (definition of Υ)
Φ(Ω(Φ(ε(Ω(anchor, prea, argsa)), P,B),Ω(t, prea, argsa),

Ω((arg1, par1), prea, argsa) . . . Ω((argm, parm), prea, argsa)), E, ∅) �
Ω(Φ(Ω(Φ(ε(anchor), P,B), t,

(arg1, par1) . . . (argm, parm)), E, ∅), prea, argsa)

Because ε(anchor) is the exception clause of a method of the program, it can only ref-
erence the formal parameters of its method, being par1, . . . , parm. As a result, Lemma
7.4 may be applied. The filter operations may be merged due to Lemma 7.2 and the
definition of Φ.

m (Lemma 7.4)
Ω(Φ(ε(Ω(anchor, prea, argsa)), P u E,B),Ω(t, prea, argsa),

Ω((arg1, par1), prea, argsa) . . . Ω((argm, parm), prea, argsa)) �
Ω(Φ(ε(anchor), P u E,B),Ω(t, prea, argsa),

Ω((arg1, par1), prea, argsa) . . . Ω((argm, parm), prea, argsa))

Because of Lemma 7.7, Lemma 7.19, and the preconditions of this lemma, we know
that:

method(Ω(anchor, prea, argsa)) <: method(anchor)

As a result, we know that according to rule @#@#@#@#@:

ε(Ω(anchor, prea, argsa)) � ε(anchor)

Now we use induction on Theorems 7.17 and 7.22 to prove the induction step. All that
is left is proving that their preconditions are satisfied.

(1) For the application of Φ, the preconditions of Theorem 7.17 are met because both
sides use the same sets of types and the � relation above.

(2) For the application of Ω, the first precondition of Theorem 7.22 follows from the
application of Theorem 7.17. The second and third preconditions are satisfied be-
cause the prefixes and actual arguments are identical. The last preconditions are
satisfied because of Lemmas 7.7 and 7.19.

—For the base case, we need to prove Theorems 7.17 and 7.22 when ε(anchor) contains
no anchored exception declarations, and the method referenced by anchor has no sub-
methods. For Theorem 7.17 the proof is included in its own proof. We will now prove
the base case for Theorem 7.22. Since ε(anchor) only contains absolute exception dec-
larations, the last two conditions in the proof of Theorem 7.22 disappear. The remaining
condition is proven by Lemma 7.18.

7.10.4 Exception Clauses
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THEOREM 7.22.

ECa � ECb ∧ prea � preb ∧ argsa � argsb∧
okΩ(argss, (prea, this(ECa))) ∧ okΩ(argsb, (preb, this(ECb)))

⇓
Ω(ECa, prea, argsa) � Ω(ECb, preb, argsb)

PROOF. The proof of this lemma is similar to that of Theorem 7.17. After rewriting
the expression Ω(ECa, prea, argsa) � Ω(ECb, preb, argsb), we obtain the following
conditions for this lemma to be true:





Φ(ABSa, E, ∅) � ABSb

⇓
Φ(Ω(ABSa, prea, argsa), E, ∅) � Ω(ABSb, preb, argsb)





∧








prea � preb ∧ argsa � argsb ∧ Φ(anchora, E, ∅) � anchorb

∧okΩ(argsa, (prea, this(anchora))) ∧ okΩ(argsb(preb, this(anchorb)))
⇓

Φ(Ω(anchora, prea, argsa), E, ∅) � Ω(anchorb, preb, argsb)









∧








prea � preb ∧ argsa � argsb ∧ Φ(Υ(anchor), E, ∅) � ECb∧
okΩ(argsa, (prea, this(anchor))) ∧ okΩ(argsb, (preb, this(ECb)))

⇓
Φ(Υ(Ω(anchor, prea, argsa)), E, ∅) � Ω(ECb, preb, argsb)









m
Lemma 7.18 ∧ Lemma 7.20 ∧ Lemma 7.21

7.11 The Implementation Exception Clause is an Upper Bound

THEOREM 7.23. The implementation exception clause of a non-abstract method is an
upper bound for the exceptional behaviour of the implementation of that method.

PROOF. This theorem follow obviously from the definition of the implementation ex-
ception clause and the Java Language Specification.

7.12 Method Invocations Maintain Compatibility

THEOREM 7.24. Let t.m(arg1, . . . , argn) be a method invocation in a valid program,
let ECb = ε(t.m(arg1, . . . , argn)) and let pari be the formal parameter corresponding
to argi.

ECa � ECb ∧ Γ(this(ECb)) = Γ(this(ECa))

⇓
Ω(ECa, t, (arg1, par1) . . . (argn, parn)) � Υ(t.m(args))

PROOF. The requirements for substitution in EC are satisfied because the program is
valid. Since EC � IEC, they are also valid if the type of this is the same. For formal
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parameters, the type must be invariant.

Ω(ECa, t, args) � Υ(t.m(args))
m

Ω(ECa, t, args) �
Ω(Φ(ECb, >, ∅), t, args)

m
Ω(ECa, t, args) � Ω(ECb, t, args)

Because ECa � ECb, it suffices to prove that the preconditions of Theorem 7.22 are
satisfied. The preconditions all follow directly from the preconditions of this lemma and
the fact that ECb = ε(t.m(arg1, . . . , argn)).

7.13 The � relation implies the δ relation

In this section, we prove that when the � relation holds between two exception clauses,
the left-hand side cannot signal an exception that is not allowed by the right-hand side.

7.13.1 Absolute Exception Declarations

LEMMA 7.25.

Φ((Pa, Ba), E, ∅) � (Pb, Bb)
⇓

δ((Pa, Ba), E) ⇒ δ((Pb, Bb), E)

PROOF.

Φ((Pa, Ba), E, ∅) � (Pb, Bb)
⇓ (definition of Φ and �)

((Pa u E) − Ba) v (Pb − Bb)
⇓ (definition of ⊆)

E E ((Pa u E) − Ba) ⇒ E E (Pb − Bb)
⇓ (definition of E and u)

E E (Pa − Ba) ⇒ E E (Pb − Bb)
⇓ (definition of δ)

δ((Pa, Ba), E) ⇒ δ((Pb, Bb), E)

7.13.2 Anchored Exception Declarations

LEMMA 7.26.

Φ(AEDa, E, ∅) � AEDb

⇓
(δ(AEDa, E) ⇒ δ(AEDb, E))

PROOF.

Φ(AEDa, E, ∅) � AEDb

⇓ (Lemma 7.8)
method(AEDa) <: method(AEDb)

⇓ (Rule @#@#@@)
ε(AEDa) � ε(AEDb)



· 43

We will now use Theorems 7.17 and 7.22.

Υ(Φ(AEDa, E, ∅)) � Υ(AEDb)
m

Ω(Φ(ε(AEDa), (Pa u E), Ba), ta, argsa) �
Ω(Φ(ε(AEDb), Pb, Bb), tb, argsb)

The preconditions of Theorems 7.17 and 7.22 are satisfied because AEDa � AEDb, and
thus Υ(Φ(AEDa, E)) � Υ(AEDb).

Υ(Φ(AEDa, E, ∅)) � Υ(AEDb)
⇓ (Induction on Theorem 7.27)

δ(Υ(Φ(AEDa, E, ∅)), E) ⇒ δ(Υ(AEDb), E)
⇓ (definition of δ)

δ(Φ(AEDa, E, ∅), E) ⇒ δ(AEDb, E)
m (Lemma 7.5)

δ(AEDa, E) ⇒ δ(AEDb, E)

For the induction, we perform a one-level expansion. Because of the no-loops rule, this
induction will always end. The base cases are exception clauses that only contain absolute
exception declarations. For such exception clauses, Theorem 7.27 is proven by Lemma
7.25.

7.13.3 Exception Clauses

THEOREM 7.27.

ECa � ECb ⇒ (δ(ECa, E) ⇒ δ(ECb, E))

PROOF.

ECa � ECb

m (definition of �)












(∀(Pa, Ba)∈ ECa,∀E, δ((Pa, Ba), E) :
∃(Pb, Bb) ∈ ECb : Φ((Pa, Ba), E) � (Pb, Bb)) ∧

(∀AEDa ∈ECa,∀E, δ(AEDa, E) : ∃AEDb ∈ ECb :
Φ(AEDa, E, ∅) � AEDb ∨
(Φ(Υ(AEDa), E, ∅) � ECb))













As a result, for every E, we can find ABSb,xi
and AEDb,y1

such that:

⇓ (Lemmas 7.25 and 7.26 and 7.5)
























δ(ABSa,1, E) ⇒ δ(ABSb,x1
, E) ∧

. . . ∧
δ(ABSa,n, E) ⇒ δ(ABSb,xn

, E) ∧
(

(δ(AEDa,1) ⇒ δ(AEDb,y1
) ∨

∀E, δ(AEDa,1, E) : Φ(Υ(AEDa,1), E, ∅) � ECb)

)

∧

. . . ∧
(

(δ(AEDa,m) ⇒ δ(AEDb,ym
) ∨

∀E, δ(AEDa,1, E) : Φ(Υ(AEDa,m), E, ∅) � ECb)

)

























For the induction below, we perform a one-level expansion. Because of the no-loops rule,
this induction will always end. The base cases are exception clauses that only contain
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absolute exception declarations. For such exception clauses, theorem 7.27 is proven by
Lemma 7.25.

⇓ (Lemma 7.5 and induction on Theorem 7.27)
























δ(ABSa,1, E) ⇒ δ(ABSb,x1
, E) ∧

. . . ∧
δ(ABSa,n, E) ⇒ δ(ABSb,xn

, E) ∧
(

(δ(AEDa,1, E) ⇒ δ(AEDb,y1
, E) ∨

δ(Υ(AEDa,1), E) ⇒ δ(ECb, E))

)

∧

. . . ∧
(

(δ(AEDa,m, E) ⇒ δ(AEDb,ym
, E) ∨

δ(Υ(AEDa,m), E) ⇒ δ(ECb, E))

)

























⇓ (Definition of δ)
























δ(ABSa,1, E) ⇒ δ(ABSb,x1
, E) ∧

. . . ∧
δ(ABSa,n, E) ⇒ δ(ABSb,xn

, E) ∧
(

(δ(AEDa,1, E) ⇒ δ(AEDb,y1
, E) ∨

δ(AEDa,1, E) ⇒ δ(ECb, E))

)

∧

. . . ∧
(

(δ(AEDa,m, E) ⇒ δ(AEDb,ym
, E) ∨

δ(AEDa,m, E) ⇒ δ(ECb, E))

)

























⇓ (definition of δ)
δ(ECa, E) ⇒ δ(ECb, E)

7.14 Expansion Does Not Allow More Than the Exception Clause

In this section, we prove that the exception clause resulting from the expansion of a method
invocation does not allow more exception to be signalled than the exception clause of the
invoked method. This property is important from a methodological point of view. If it
were allowed, a method invocation could be allowed to signal a checked exception that
could not have been foreseen by looking only to the exception clause of the method. This
is very confusing for a programmer. For example, the expansion function could simply
return throws Throwable. This would not compromise compile-time safety, but it
would make anchored exception declarations useless.

LEMMA 7.28.

δ(Φ((P,B), Pn, Bn), E) ⇒ δ((P,B), E)

PROOF.

δ(Φ((P,B), Pn, Bn), E) ⇒
δ((P u Pn, B t Bn), E) ⇒

E E ((P u Pn) − (B t Bn)) ⇒
E E P ∧ E E Pn ∧ E 6E B ∧ E 6E Bn ⇒

E E P ∧ E 6E B ⇒
δ((P,B), E)
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LEMMA 7.29.

δ(Φ(anchor), Pn, Bn), E) ⇒ δ(anchor,E)

PROOF. Let anchor = like t.m(args) E P 6E B.

δ(Φ(anchor, Pn, Bn), E) ⇒ δ(anchor,E)
m

δ(Υ(Φ(anchor, Pn, Bn)), E) ⇒ δ(Υ(anchor), E)
m (Φ does not affect the method expression)

δ(Ω(Φ(ε(anchor), P u Pn, B t Bn), t, args), E) ⇒
δ(Ω(Φ(ε(anchor), P,B), t, args), E)
m (Lemma 7.2 and definition of Φ)

δ(Φ(Ω(Φ(ε(anchor), P,B), t, args), Pn, Bn), E) ⇒
δ(Φ(Ω(Φ(ε(anchor), P,B), t, args), >, ∅), E)

We now use Theorems 7.22 and 7.17.

—The first three preconditions of 7.22 are satisfied because the corresponding elements
in the equation above are identical. The last preconditions follow from the fact that
the program must be valid and the fact that Φ does not affect the method expression of
anchor and thus does not affect the selected method either.

—The preconditions of Theorem 7.17 are satisfied because (Pn − Bn)) � (> − ∅).

As a result, we know that:

Φ(Ω(Φ(ε(anchor), P,B), t, args), Pn, Bn) �
Φ(Ω(Φ(ε(anchor), P,B), t, args), >, ∅)

Applying Theorem 7.27 completes the proof.

LEMMA 7.30.

δ(Φ(EC,P,B), E) ⇒ δ(EC,E)

PROOF.

δ(Φ(EC,P,B), E)
m

δ(Φ({ABS1, . . . , ABSn AED1, . . . , AEDm}, P,B), E)
m (definition of Ω)

δ({Φ(ABS1, P,B), . . . ,Φ(ABSn, P,B)
Φ(AED1, pre, args), . . . ,Φ(AEDm, pre, args)}, E)

m (definition of δ)
δ(Φ(ABS1, P,B)E) ∨ . . . ∨ δ(Φ(ABSn, P,B), E)∨
δ(Φ(AED1, P,B), E) ∨ . . . ∨ δ(Φ(AEDm, P,B), E)

⇓ (Lemmas 7.28 and 7.29)

δ(ABS1, E) ∨ . . . ∨ δ(ABSn, E)∨
δ(AED1, E) ∨ . . . ∨ δ(AEDm, E)

m
δ(EC,E)
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LEMMA 7.31.

okΩ(args, (pre, this(AED)))
⇓

δ(Ω(AED, pre, args), E) ⇒ δ(AED,E)

PROOF. Let AED = like t.m(a1, . . . , an) E P 6E B.

δ(Ω(AED, pre, args), E) ⇒ δ(AED,E)
m (definition of δ)

δ(Υ(Ω(AED, pre, args)), E) ⇒ δ(Υ(AED), E)
m (definition of Υ)

δ(Ω(Φ(ε(Ω(AED, pre, args)), P,B),Ω(t, pre, args),
Ω(a1, pre, args) . . . Ω(an, pre, args)), E) ⇒

δ(Ω(Φ(ε(AED), P,B), t, args), E)

Because okΩ(args, (pre, env(AED))), we know from Lemmas 7.7 and 7.19 that:

Γ(Ω(t, pre, args)) <: Γ(t)∧
Γ(Ω(a1, pre, args)) <: Γ(a1) ∧ . . . Γ(Ω(an, pre, args)) <: Γ(an)

As a result, we know that the method selected by Ω(AED, pre, args) will override or be
equal to the method selected by AED. This means that rule @@@@@@ applies

ε(Ω(AED, pre, args)) � ε(AED)

We now apply Theorems 7.17 and 7.22 to the arguments of δ in the implication above.

—The preconditions of Theorem 7.17 are satisfied because the arguments of Φ are identi-
cal.

—The first precondition of Theorem 7.22 follows from the application of Theorem 7.17.
The second and third preconditions follow from Lemma 7.19. The last preconditions
follow from the preconditions of this lemma, from Lemmas 7.7 and 7.19, from the fact
that the types of the target of a method invocation must be conform to the type of this in
the invoked method, from the fact that the type of the actual arguments must be conform
to that of the invoked method, and from the requirement that types of formal parameters
must be invariant.

As a result, we know that:

Ω(Φ(ε(Ω(AED, pre, args)), P,B),Ω(t, pre, args),
Ω(a1, pre, args) . . . Ω(an, pre, args)) �

Ω(Φ(ε(AED), P,B), t, args)

Applying Theorem 7.27 completes the proof.

LEMMA 7.32.
okΩ(args, (pre, env(EC)))

⇓
δ(Ω(EC, pre, args), E) ⇒ δ(EC,E)

PROOF. The proof of this lemma is nearly identical to that of Lemma 7.30.

THEOREM 7.33.

δ(Υ(AED), E) ⇒ δ(ε(AED), E)
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EC δ(EC, E)

EC′ δ(EC′, E)

IEC δ(IEC, E)

IEC′ δ(IEC′, E)

�

�

Ω

Ω

18: bla

PROOF. This theorem follows directly from Lemmas 7.32 and 7.30.

7.15 Compile-time safety

Now we can finally prove that anchored exception declarations are compile-time safe. For
compile-time safety to be violated, there must be at least one method of which the imple-
mentation can signal a checked exception under a circumstance that could not have been
predicted by the client when inspecting the exception clause of that method. We now show
that this is not possible for a program satisfying all rules.

Figure 18 illustrates the proof. The exception clause of the method is represented by
EC, its implementation exception clause by IEC. We know from rule @@@@@that
IEC � EC, so Theorem 7.24 ensures that after insertion of the context information of
any call-site, resulting in EC ′ and IEC ′, EC ′ � IEC ′ holds. Note that at run-time,
the available context information is even more specific, but because the same information
is inserted in both exception clauses, the relation between IEC ′ and EC ′ will still hold.
Both relations are shown in the left diagram.

Using Theorem 7.27 and Lemma 7.32, we can transform the left diagram into the
right diagram. Theorem 7.27 ensures that δ(IEC,E) ⇒ δ(EC,E) and δ(IEC ′, E) ⇒
δ(EC ′, E). Lemma 7.32 ensures that δ(EC ′, E) ⇒ δ(EC,E) and δ(IEC ′, E) ⇒
δ(IEC,E). Both relation are shown in the right diagram.

From these relations, we can conclude that no method invocation can result in a checked
exception that was not declared by the exception clause of the invoked method.

8. COMPARISON WITH TYPE ANCHORS

The anchoring technique has more impact on the exceptional return type than on the normal
return type of a method. The reason for this is that a normal return value can be used
through subsumption. The most specific type information is often not needed. For an
exception, however, the general type is usually not sufficient [25]. In this case we need
as much information as possible because, by the very nature of an exception handling
mechanism, the signaller is not supposed to know how to handle it. Consequently, he
cannot provide an exception that will handle itself, prohibiting the use of subsumption.

The conformance rule for anchored exception declarations is more flexible than the cor-
responding conformance rule for Eiffel type anchors. In Eiffel, the only type conform to
like anchor is itself. The rule for anchored exception declarations leaves the opportu-
nity to redefine a part of an exception clause by one or more stronger anchored declarations.
The need for this is caused by the difference between the normal and exceptional behaviour
of a method. Adding an extra layer of indirection (rule 2.b) is useful for exceptions be-
cause some of them may be handled in the extra layer. For example, a redefined version
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of the extra layer may declare that it cannot signal any checked exception at all although
the method referenced by the original anchored declaration can. This is not possible for
the normal return type since there must always be exactly one return type and that type
has already been fixed. Both anchored declarations have a slightly different meaning. An
Eiffel type anchor declares that the type is always the same as the type of the anchor, while
an anchored exception declaration declares that it cannot signal exception when the anchor
cannot.

The difference in the conformance rules results in a difference between the rules to
prevents loops while following anchored declarations. The rule of Eiffel type anchors
is weaker than the rule for anchored exception declarations because it is not allowed to
redefine the type of an anchored declaration in Eiffel. As a result, it suffices to demand that
there is no loop in the anchor chain.

9. CASE STUDY

An analysis of the core of Jnome [34] showed that while only 46 methods directly raise a
NotResolvedException, there are more than 400 methods that only propagate this
exception. A NotResolvedException signals an unexpected failure while looking
up a named element, such as encountering multiple matches for an element when only a
single element should match – the metamodel does not enforce validity at every moment
for reasons of flexibility. When the element simply cannot be found, a null reference is
returned.

Suppose that instead of returning a null reference, a checked exception must be sig-
nalled when an element cannot be found. This exception cannot be a subclass of
NotResolvedException since it does not signal a failure caused by an ‘invalid’
instance of the metamodel. Just like NotResolvedException, the new exception
cannot be handled by the metamodel itself, since it is up to the client of the metamodel
to decide what to do when an element cannot be found. This means that all meth-
ods that previously propagated NotResolvedException must now also propagate
ElementNotFoundException, resulting in modifying over 400 other methods. With
anchored exception declarations, they would not have to be modified.

From the 110 try-catch statements in the code, only 30 actually handle exceptions.
The other 80 try-catch statements are dummy constructions to filter out Exception.

10. RELATED WORK

Java was the first programming language seeking a compromise between robustness and
flexibility by providing both checked and unchecked exceptions [9]. But as we showed in
section 3, this solution is not sufficient.

Mikhailova and Romanovsky [24] provide support for evolution of the exceptional be-
haviour of a method by introducing a rescue clause. A rescue clause is a default exception
handler that allows a method to have an exception clause that is not compatible with its
supermethods. If a client of that method provides a handler for the new exception, that
handler is used, otherwise the rescue clause handles the exception. This mechanism only
provides a solution when a useful default handler can be provided, which usually is not the
case. Anchored exception declarations are complementary to the rescue clause. The rescue
clause allows a programmer to signal new exceptions for which a default handler can be
provided, while anchored exception declarations can be used when such a handler cannot
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be provided.
Romanovsky and Sandén [31] show that an exception handling mechanism should cor-

respond to the features of the language. We have shown that the exception clause of
object-oriented programming languages conflicts with the principle of abstraction, which
is a fundamental concept of object-oriented programming. By solving this conflict, many
problems with checked exceptions are solved.

Miller and Tripathi [25] analyse the conflicts between exception handling and object-
oriented programming. Our paper is related to these conflicts in several ways. We showed
there is a conflict between the principle of abstraction and the exception clauses of object-
oriented programming languages. This conflict however is not a conflict with object-
oriented programming itself, but with the incarnation of the exception clause in exist-
ing languages. Furthermore, by bringing context information into the exception clause,
anchored exception declarations reduce – but do not eliminate – the conflict between ex-
ception conformance and complete exception specification. Specific information about the
exception behaviour of an overriding method can still be used when the interface of its
supermethod has a general exception for conformance reasons. The authors also argue that
exception handling increases coupling in object-oriented programs. Anchored exception
declarations increase coupling, but in a way that is beneficial for the programmer. With
respect to adaptability, they decrease coupling. Last, Miller and Tripathi discuss the need
for evolution of the exceptional behaviour of a method. They briefly suggest that a lan-
guage should allow exception non-conformance and the ability to add exception handlers
to existing code.

Lippert and Lopes [19] simplify exception handling by using aspect-oriented program-
ming. Their approach focuses on removing redundant exception handlers, and can be
used for adding the dummy exception handlers and propagating exceptions. Using aspect-
oriented programming can be very useful when the exception handlers are meaningful, but
for checked exceptions it does not solve the adaptability problem and the program still
suffers from hazardous situations under evolution. Anchored exception declarations solve
these aspects of exception handling in a better way.

Robillard and Murphy [30] developed a language-independent model for analysing the
exception flow in object-oriented programs, along with a tool specifically for Java. Their
model is based on the analysis of source code, and also takes unchecked exceptions into
account. This paper also discusses the cost of modifying the exception clause of a method,
and the use of unchecked exceptions as a result. In [29], they show that the difficulty in
determining all exceptional conditions in advance gives rise to the need for evolution of
the exceptional behaviour of a method.

Specification of the dependencies between methods has been presented by Helm et al.
[13], by Lamping [16], and by Steyaert et al. [35]. They present their work using the nor-
mal behaviour of a method, but their techniques also apply to the exceptional behaviour of
method. Anchored exception declarations provide these dependencies for the exceptional
behaviour in a way that is verifiable by a compiler.

11. FUTURE WORK

While anchored exception declarations solve most of the problems of using checked ex-
ceptions, there is still room for improvement.

At this moment, an anchored exception declaration can limit the set of exceptions that are
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propagated, but it cannot express the transformation of one type of exceptions into another,
which can be necessary when crossing the boundaries of a component [29]. A construct to
express this would allow for a more fine grained specification of the exceptional behaviour
of a method, and could look like this:

NewException like MethodExpression
signals (OldException)

Additionally, the algorithm for calculating the implementation exception clause can be
improved. For example, at this moment it does not retain information about the origin of a
checked exception if it is caught, and then raised again. It will treat the raised exception as
if it can be signalled at any time and discard possible anchor relations.

The expressiveness of anchored exception declarations is limited in the sense that they
only take static type information into account. Information about the exact conditions
under which certain exceptions can be signalled still have to be provided by specifications.
Anchored exception declarations are complementary to traditional specifications, and can
be added to existing specification languages, such as JML and Spec# [], in order to enrich
their expressiveness regarding exception handling.

12. CONCLUSION

We have shown that problems with checked exceptions, like reduced adaptability and loss
of context information, are caused by a conflict with the principle of abstraction. The
relative nature of abstraction improves the adaptability of the implementation and post-
conditions, while the absolute nature of traditional exception clauses does not offer any of
those benefits.

By introducing anchored exception declarations, we have opened the road for a broader
acceptance of checked exceptions. They bring the benefits of abstraction to the exception
clause by allowing the exceptional behaviour of a method to be declared relative to other
methods. This results in better adaptability of software, more elegant code, and eliminates
most of the dangerous exception handlers.

We have defined the formal semantics of anchored exception declarations, and the rules
they must adhere to in order to ensure compile-time safety, which we have proved. We
have shown that anchored exception declarations do not violate the principle of information
hiding when used properly, and have presented a guideline for when to use them, and when
not to use them.

Finally, we have implemented anchored exception declarations in Cappuccino, an ex-
tension of ClassicJava. A translator validates Cappuccino programs and transforms them
into plain Java programs.
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