Compositionality
of normal open logic programs

Sofie Verbaeten, Marc Denecker, Danny De Schreye

Report CW254, July 1997

Department of Computing Science, K.U.Leuven

Abstract

Compositionality of programs is an important concern in knowledge representation and software development. In the context of Logic Programming, up till now, the issue has mostly been studied for definite programs only.

Here, we study compositionality in the context of normal open logic programming. This is a very expressive logic for knowledge representation of uncertainty and incomplete knowledge on concepts and on problem domain, in which the compositionality issue turns up very naturally. The semantics of the logic is a generalisation (allowing non-Herbrand interpretations) of the well-founded semantics.

We provide a number of results which offer different sufficient conditions under which the models of the composition of two theories can be related to the intersection of the models of the composing theories. In particular, under these conditions, logical consequence will be preserved under composition.

Keywords: Logic Programming, Knowledge representation.
CR Subject Classification: I.2.3
1 Introduction

The compositionality issue arises in a situation where two or more experts cooperate to axiomatise a certain domain of application; they have more or less disjunct subdomains of expertise and they represent their expert knowledges independently in distinct logical theories. Ideally, once this stage is finished the problem arises how to combine the knowledge modules in one united theory. In general, there may be different modes in which the modules can be composed, but certainly the most important one seems to take the logical conjunction of their knowledges; i.e. to construct a new theory which contains exactly the sum of the knowledges of the component modules.

By the nature of the situation, the modules designed by the experts are incomplete representations of the problem domain; they contain uncertainty about the problem domain. Typically, experts will have two sorts of ignorance in their theories: ignorance on relations, some of which are defined by the other experts; ignorance about the objects some of which are defined by other experts. A suitable logic to represent knowledge modules should allow to represent these forms of uncertainty.

Here, we investigate the compositionality issue in the logic of normal Open Logic Programs (OLP) and First Order Logic (FOL) [10]. [10] presents this logic from a Knowledge Representation perspective and illustrates its suitability for representing uncertainty of similar nature as cooperating experts have to face: incomplete knowledge on the definitions of certain concepts and on the problem domain.

A theory \(T \) in this logic is a pair \((T_d, T_c)\) of a First Order Logic theory \(T_c \) and a normal open logic program \(T_d \), i.e. a set of normal program clauses \(p \leftarrow q_1, \ldots, q_n, \neg r_1, \ldots, \neg r_m \). Normal open logic programs will further on also be called logic programs briefly. \(T_d \) represents a set of definitions. Predicates occurring in the head of a clause of \(T_d \) are called defined. The other predicates, occurring at the most in the body of program clauses, are called open. Intuitively, they represent concepts for which no definitions are given. Partial knowledge about these predicates can be expressed in the set of FOL axioms \(T_c \).

The model semantics of OLP-FOL is an extension of the well-founded semantics [21] and of the extended well-founded semantics [19] and was defined in [11]. This logic has a possible state semantics, that is, a model correspond to a state in which the problem domain might occur according to the (incomplete) expert knowledge (and not a belief set, a set of believed atoms, as in answer set semantics of Extended Logic Programming). At the level of the semantics, uncertainty on the definition of a concept is modeled by allowing models which give to the open predicates an arbitrary interpretation which satisfies the set of FOL axioms \(T_c \) (and not e.g. by having truth value unknown for these open predicates as in a belief set semantics). Uncertainty on the level of the domain of discourse (no Domain Closure) is modeled by allowing general, non-Herbrand models.

Compositionality of logic programs has been investigated by a number of researchers. We refer to the discussion section for explicit references. In the context of OLP-FOL, the problem of correct composition of different independently designed modules has a natural formulation which differs from the formalisation as presented in much of the existing research. In the context of a logic with possible state semantics, the compositionality criterion that a logic theory \(T \) contains precisely the sum of the knowledges in the modules \(T_1, T_2 \) has a natural formalisation: that the class of models of \(T \) is precisely the intersection of the classes of models of \(T_1 \) and of \(T_2 \). Note that this criterion is the one expressed by the semantics of classical logic conjunction: models of the conjunction \(F \land G \) of arbitrary FOL formulas \(F, G \) are precisely the models of \(F \) and of \(G \).
Here, we investigate conditions under which the simple union of two OLP-FOL theories T_1, T_2 yields a theory that satisfies the natural compositionality criterion. For a more formal description of the problem investigated, we need the following notions. The composition of two OLP-FOL theories $T_1 = (T_{1d}, T_{1c})$ and $T_2 = (T_{2d}, T_{2c})$ is defined as the theory $T_1 \cup T_2 = (T_{1d} \cup T_{2d}, T_{1c} \cup T_{2c})$. Also, given a class of interpretations \mathcal{J}, the class of members of \mathcal{J} which are models of the OLP-FOL theory T is denoted $\text{Mod}^\mathcal{J}(T)$. Using these notions, the compositionality problem considered here is formalised as follows.

- Given is a class \mathcal{J} of interpretations, representing a priori knowledge shared by the experts. In general, this class may be the class of models of a logical theory representing the a priori knowledge. E.g. this theory can describe knowledge on the domain of discourse (a Domain Closure Axiom) or simple programming concepts such as definitions of membership of lists, appending of lists, etc.,

- given also is a pair of OLP-FOL theories T_1, T_2 representing the modules of the experts with non-intersecting sets of defined predicates,

we investigate conditions on T_1, T_2 such that:

$$\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2).$$

After section 2, which recalls the semantics of OLP-FOL from [11], section 3 gives us a first result, stating that for correct theories, the class of models of the composition is contained in the intersection of the classes of models of the two separate theories. In section 4, by using the notion of justification, we give a very general condition, the justification condition, on T_1 and T_2 to obtain the equality $\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2)$. In the next two sections (5, 6), some less general, but more syntactical conditions are given; in section 5 for the propositional case, in section 6 for the predicate case. In 6.2, for instance, we study conservative extensions. We conclude in section 7 with a discussion on some related works.

2 OLP-FOL

We assume familiarity with basic concepts of logic and logic programming such as logical languages \mathcal{L}, atoms, literals, (normal) program clauses or rules based on \mathcal{L}, ground instances of rules w.r.t. a language \mathcal{L}, 2-valued and 3-valued interpretations, Herbrand interpretations of \mathcal{L}. We refer to [17]. We assume some familiarity with the well-founded semantics [21] as well. We introduce some auxiliary concepts. Each language \mathcal{L} is assumed to contain propositional predicates \top and \bot; in each interpretation I of \mathcal{L}, \top is true and \bot is false. \mathcal{H}_I (or \mathcal{H} if \mathcal{L} is clear from the context) denotes the class of all Herbrand interpretations of the language \mathcal{L}. Atomic rules are denoted $A \leftarrow \top$. Given a language \mathcal{L} and an interpretation I with domain D, define the language \mathcal{L}_I as the extension of \mathcal{L} by adding all elements of D as constants to \mathcal{L}. A literal of the form $p(d_1, \ldots, d_n)$ or $\neg p(d_1, \ldots, d_n)$, where $d_1, \ldots, d_n \in D$ is called a fact. For a ground literal $F = p(t_1, \ldots, t_n)$ in \mathcal{L}_I, $\bar{I}(F)$ denotes the fact $p(\bar{I}(t_1), \ldots, \bar{I}(t_n))$, where \bar{I} is the mapping which assigns to each ground term in \mathcal{L}_D the corresponding domain element of the interpretation I. The truth function of I (i.e. the function which maps positive facts to $\{\bot, u, t\}$) is denoted by \mathcal{H}_I. We describe a truth function as a set of tuples of facts with truth value (e.g. $\{p^t, q^u, r^t\}$, meaning that $\mathcal{H}_I(p) = t, \mathcal{H}_I(q) = u$ and $\mathcal{H}_I(r) = t$). 2-valued Herbrand interpretations are denoted in the conventional notation, as a subset of the Herbrand base.
A theory T in the OLP-FOL logic is a pair (T_d, T_c) with T_d a set of normal program clauses $p \leftarrow q_1, \ldots, q_m, \neg r_1, \ldots, \neg r_m$ (with $p, q_1, \ldots, q_m, r_1, \ldots, r_m$ atoms) and T_c a set of FOL formulas. A predicate p is defined in T_d or in T iff p occurs in the head of a rule of T_d (it is possible that this rule is of the form $p(t_1, \ldots, t_n) \leftarrow \bot$). Open predicates are predicates of \mathcal{L} which are not defined. An open logic program T_d (or a theory T) is complete if each predicate symbol of \mathcal{L} except equality $=, \top$ and \bot is defined, otherwise it is incomplete.

The grounding of an open logic program T_d w.r.t. a given 3-valued interpretation I is denoted as $\text{Ground}_I(T_d)$ and is defined as the following set of program clauses:

$$\{ \tilde{I}(F) \leftarrow \tilde{I}(F_1), \ldots, \tilde{I}(F_n) \mid F \leftarrow F_1, \ldots, F_n \text{ ground instance of a rule in } T_d \text{ in } \mathcal{L}_D \}$$

$$\cup \{ F \leftarrow \top \mid F \text{ is a positive fact of an open predicate and } F \text{ is true in } I \}$$

The semantics of OLP-FOL is based on the concept of justification. A justification can be seen as a mathematical object justifying the truth value of facts in terms of truth values of other facts. The basic theorem of this paper, which gives weakest conditions under which two OLP-FOL theories can be composed, uses the concept of justification. For a detailed discussion we refer to [11]. The rest of this section is structured as follows. We define the concepts of justification and justification semantics. We show how the justification semantics is an extension of the well-founded semantics [21] based on general interpretations.

Below, we denote the complement of a fact F by $\neg F$; i.e. if F is a positive fact, then $\neg F$ denotes $\neg F$; vice versa $\neg F$ denotes F. We define $\neg \top = \bot$ and vice versa.

We now define the concepts of elementary justification and justification given an open logic program T_d based on \mathcal{L} and an interpretation I of \mathcal{L}.

Definition 2.1 Given is a defined positive fact F in I.

For any rule $F \leftarrow F_1, \ldots, F_n \in \text{Ground}_I(T_d)$ we call $\{F_1, \ldots, F_n\}$ an elementary justification for F. If no such ground instance exists for F, then we call $\{\bot\}$ an elementary justification for F.

Each positive defined fact has an elementary justification. Also, an elementary justification is never empty (recall atomic rules are denoted as $A \leftarrow \top$). An elementary justification is always finite. The concept of an elementary justification can also be defined for negative facts.

Definition 2.2 A set J is called an elementary justification for a negative fact $\neg F$ of a defined predicate iff each elementary justification J^+ of F contains a fact F' such that $\neg F' \in J$.

Analogously as for positive facts, each negative fact $\neg F$ has an elementary justification and an elementary justification is never empty. It can be infinite.

Definition 2.3 A justification J for F (given T_d and I) is a (possibly infinite) tree of facts with F in the root. Each non-leaf node contains a defined fact F' such that the set of direct descendants of the node is an elementary justification for F' and no leaf contains a defined fact.

The leaves of a justification are \top, \bot or positive or negative open facts. A justification of a fact is always defined w.r.t. a logic program T_d. Therefore, when necessary, we explicitly talk about a justification in T_d rather than a justification.

A branch in a justification J is a maximal sequence of facts (F_0, F_1, \ldots) with F_0 in the root of J, and each F_i a direct descendant of F_{i-1} in J. A positive (resp. negative) loop is a branch with an infinite number of positive (resp. negative) facts and a finite number of negative (resp. positive) facts. A loop over negation is a branch with an infinite number of positive and negative facts. Next we define the value of a justification as a measure for its success.
Definition 2.4 Let I be an interpretation.
Let B be a branch in a justification. If B is finite and has F as leaf then the value of B under I is the truth value of F under I. With respect to infinite branches, we define the value of a positive loop as 1, the value of a loop over negation as 0 and the value of a negative loop as 0.
We denote the value of B under I by \(\text{val}_I(B) \).
Let J be a justification. The value of J under I is \(\min\{\text{val}_I(B) | B \text{ is a branch of } J\} \). We denote J's value under I by \(\text{val}_I(J) \). J is false, weak, strong under I if \(\text{val}_I(J) \) is 0, 1, 2 respectively.

The essential idea in the justification semantics is that an interpretation is a justified model of a logic program \(T_d \) for each defined positive fact F, its truth value is equal to the value of its most successful justification. We call this value the supported value of F and denote it by \(\text{SV}^{T_d}(I; F) \).

We extend the notion of supported value to open facts and negative facts. The supported value under I of an open fact F is defined as \(\mathcal{H}_I(F) \). The supported value under I of a negative defined fact F can be defined analogously as for positive facts: it is equal to the value of the best justification of F.

The following theorem asserts that a fact and its negation have inverse supported values.

Theorem 2.1 Let \(T_d \) be a logic program, I an interpretation and F a fact.
Then \(\text{SV}^{T_d}(I; F) = \text{SV}^{T_d}(I; \neg F)^{-1} \).

A direct consequence of this theorem is that in a model the truth value of negative facts is also equal to their supported value. This restores the asymmetry between positive and negative facts in the definition of model, which requires only that positive facts have truth value equal to their supported value.

The next theorem asserts that each logic program is consistent w.r.t. the justification semantics. An interpretation I is called an incomplete interpretation for some subset of the predicates of \(L \) if it is a partial interpretation of which the truth function is defined only for the specified predicates.

Theorem 2.2 Given is a logic program \(T_d \) and an incomplete 2-valued interpretation I for the open predicates of \(L \) only. There exists a unique justified model of \(T_d \) extending I.

The semantics of the OLP-FOL logic is an extension of well-founded semantics [21] based on general interpretations. Well-founded semantics can be easily lifted to general interpretations by using the notion of grounding w.r.t. a given 3-valued interpretation. We will now give an alternative characterisation of a model of a theory. Theorem 2.3 is a trivial extension of results proven in [11].
Definition 2.6 An interpretation M is a model of T_d iff M is a well-founded model of the grounding of T_d w.r.t. M. M is a model of $T = (T_d, T_c)$ iff M is a model of T_d and M is a model of T_c in the normal FOL sense.

Theorem 2.3 An interpretation is a justified model of T iff it is a model of T in the sense of definition 2.6.

Note that the grounding of an open logic program T_d w.r.t. to a Herbrand interpretation corresponds to the conventional notion of the grounding of a logic program. It trivially follows that the Herbrand model of a complete logic program is the well-founded model. Also, a Herbrand model of an incomplete logic program is an extended well-founded model [19].

An open logic program T_d is interpreted as a definition of the defined predicates in terms of open predicates. The occurrence of an undefined fact in a model of T_d reveals an ambiguity or a local inconsistency in the definition. This motivates the following definition.

Definition 2.7 Given is an open logic program T_d and a class of interpretations J. Then T_d is called a correct definition (or correct) w.r.t. J iff each model of T_d which belongs to J is 2-valued. A theory $T = (T_d, T_c)$ is correct w.r.t. J iff T_d is a correct definition w.r.t. J.

In case J is the class of all interpretations, we simply call T correct.

With $\text{Mod}(T)$ we will denote the class of models of a theory T. If J is a class of interpretations, then $\text{Mod}^J(T)$ denotes the class of models of T which belong to J (i.e. $\text{Mod}^J(T) = \text{Mod}(T) \cap J$).

Recall the following definition of consequence of a theory.

Definition 2.8 A formula is a consequence of a theory T if it is true in every model of T.

3 No loss of information

Given is a first order language L and two theories $T_1 = (T_{1d}, T_{1c})$ and $T_2 = (T_{2d}, T_{2c})$ based on L. We will suppose, for the rest of the paper, that T_1 and T_2 define disjunct sets of predicates. Then all the predicate symbols of L defined in T_1 (resp. T_2) are open in T_2 (resp. T_1). Recall that the predicate symbols of L not defined in T_1 or T_2 are open in T_1 and T_2.

Denote the union of T_1 and T_2 by $T_1 \cup T_2 = (T_{1d} \cup T_{2d}, T_{1c} \cup T_{2c})$ (where \cup is just the normal union of sets; T_{id} a set of clauses, T_{ic} a set of FOL axioms, $i \in \{1, 2\}$).

The crucial question in this paper is the following: 'When are the consequences of $T_1 \cup T_2$ exactly those formulas which are true in all the interpretations which are model of T_1 and of T_2?'. Since a formula is a consequence of a theory iff it is true in every model of the theory, we can reformulate this question in terms of models: 'When is $\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2)$?'. The equality doesn't always hold, as is shown by the following example.

Example 3.1

$T_1 : alive \leftarrow \neg \text{dead}$

$T_2 : \neg \text{dead} \leftarrow \text{alive}$

Because $\neg \text{dead}$ is open in T_1, T_1 has two models, $I_1 = \{\neg \text{dead}^t, \text{alive}^t\}$ and $I_2 = \{\neg \text{dead}^f, \text{alive}^f\}$. T_2 has the same two models (alive is open in T_2). But only the interpretation I_1 is a model of $T_1 \cup T_2$. We see that $\neg \text{alive}$ and $\neg \text{dead}$ are consequences of the union $T_1 \cup T_2$, whereas it is not the case that they are true in every interpretation which is a model of T_1 and of T_2.

5
In the next sections we give some conditions on the theories \(T_1 \) and \(T_2 \), so that the equality
\[\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2) \]
holds. But generally, for correct theories, \(T_1, T_2 \) and \(T_1 \cup T_2 \), the inclusion
\[\text{Mod}(T_1 \cup T_2) \subseteq \text{Mod}(T_1) \cap \text{Mod}(T_2) \]
already holds. This means that formulas which are true in every interpretation which is a model of \(T_1 \) and \(T_2 \) are consequences of \(T_1 \cup T_2 \) (but it is possible that \(T_1 \cup T_2 \) has more consequences, see example 3.1). Before giving this result, we show in the next example that it is not always the case that the union of two correct theories is correct.

Example 3.2

\[
\begin{align*}
T_1 &: \quad \text{alive} \leftarrow \neg \text{dead} \\
T_2 &: \quad \text{dead} \leftarrow \neg \text{alive}
\end{align*}
\]

It is easy to see that
\[\text{Mod}(T_1) = \text{Mod}(T_2) = \{ \{ \text{dead}^\#, \text{alive}^+ \}, \{ \text{dead}^+, \text{alive}^f \} \}. \]
So, \(T_1 \) and \(T_2 \) have only 2-valued models. But \(T_1 \cup T_2 \) has a unique model which is 3-valued, namely \(\{ \text{dead}^u, \text{alive}^u \} \). Also the converse does not hold. If we know that \(T_1 \cup T_2 \) is a correct theory, we cannot conclude that \(T_1 \) and \(T_2 \) are correct.

Example 3.3

\[
\begin{align*}
T_1 &: \quad \begin{cases}
\text{dead} & \leftrightarrow \neg \text{alive}, \neg \text{dancing} \\
\text{alive} & \leftrightarrow \neg \text{dead}
\end{cases} \\
T_2 &: \quad \begin{cases}
\text{dancing} & \leftrightarrow \top
\end{cases}
\end{align*}
\]

\(T_1 \cup T_2 \) has only one model (which is 2-valued), stating that dancing and alive are true and dead is false. The predicate dancing is open in \(T_1 \), so if we assume that dancing is false, we get the 3-valued model of \(T_1 \) in which dead and alive have truth value \(u \).

Theorem 3.1 (no loss of information)

Given two theories \(T_1 \) and \(T_2 \) such that \(T_1, T_2 \) and \(T_1 \cup T_2 \) are correct. Then \(\text{Mod}(T_1 \cup T_2) \subseteq \text{Mod}(T_1) \cap \text{Mod}(T_2) \).

Proof

Suppose \(M \) is a model of \(T_1 \). We prove that \(M \) is a model of \(T_1 \). Since \(M \) is a model of the FOL axioms \(T_{1c} \cup T_{2c} \), \(M \) is a model of \(T_{1c} \).

We prove that \(M \) is a justified model of \(T_{1d} \).

Let \(F \) be a fact. Suppose that \(F \) is open in \(T_1 \). Then \(H_M(F) = SV^{T_{1d}}(M, F) \) by definition and \(M \) is 2-valued.

Suppose that \(F \) is defined in \(T_1 \). We first assume that \(H_M(F) = t \). Because \(M \) is a justified model of \(T_{1d} \cup T_{2d} \), \(SV^{T_{1d} \cup T_{2d}}(M, F) = H_M(F) \). So there exists a justification \(J \) for \(F \) in \(T_{1d} \cup T_{2d} \) such that \(\text{val}_M(J) = t \). This means that every branch of \(J \) has value \(t \). Let \(J_1 \) be the justification for \(F \) in \(T_{1d} \) obtained from \(J \) by cutting off every branch after its first fact defined in \(T_2 \). Then it is easy to see that \(\text{val}_M(J_1) = t \) and
\[SV^{T_{1d}}(M, F) = t = H_M(F). \]

If \(H_M(F) = f \), then \(H_M(\sim F) = t \) and by the previous we know that
\[SV^{T_{1d}}(M, \sim F) = t. \]

By the consistency theorem (2.1) \(SV^{T_{1d}}(M, F) = f \), hence
\[SV^{T_{1d}}(M, F) = H_M(F). \] \(\Box \)

Example 3.2 shows that if for instance \(T_1 \cup T_2 \) is not correct, the inclusion doesn’t hold anymore.
Recall that we made the assumption that each predicate symbol is defined in at most one theory \(T_1 \) or \(T_2 \). This assumption is necessary, as is made clear by the following example.

Example 3.4

\[
\begin{align*}
T_1 & : \{ \text{not_dead} \leftarrow \text{alive} \\
& \quad \text{alive} \leftarrow \text{not_dead} \} \\
T_2 & : \{ \text{alive} \leftarrow \top \}
\end{align*}
\]

\(T_1 \) has only one model in which both alive and not_dead are false. When adding a second rule for alive (stating that alive is always true), we get another unique model in which alive and not_dead are true.

For some theories we are only interested in certain classes of interpretations, like for instance Herbrand interpretations. In this case, we have the following result, which is a generalisation of theorem 3.1.

Theorem 3.2 Given a class of interpretations \(\mathcal{J} \) and two theories \(T_1 \) and \(T_2 \) such that \(T_1, T_2 \) and \(T_1 \cup T_2 \) are correct w.r.t. \(\mathcal{J} \). Then \(\text{Mod}^\mathcal{J} (T_1 \cup T_2) \subseteq \text{Mod}^\mathcal{J} (T_1) \cap \text{Mod}^\mathcal{J} (T_2) \).

Proof The proof is analogous to the proof of theorem 3.1. We now start with a model of \(T_1 \cup T_2 \) which belongs to \(\mathcal{J} \). \(\square \)

Example 3.5

\[
\begin{align*}
T_1 & : \{ \text{even}(0) \leftarrow \top \\
& \quad \text{even}(s(s(X))) \leftarrow \neg\text{odd}(X) \} \\
T_2 & : \{ \text{odd}(s(0)) \leftarrow \top \\
& \quad \text{odd}(s(s(X))) \leftarrow \neg\text{even}(X) \}
\end{align*}
\]

It is easily seen that \(T_1 \) and \(T_2 \) are correct. But \(T_1 \cup T_2 \) has a 3-valued (non-Herbrand) model. Indeed, let \(J_0 \) be the pre-interpretation with domain the disjunct union \(\mathbb{N} \cup \mathbb{Z} \), the interpretation of 0 (constant) \(0 \in \mathbb{N} \) and the interpretation of \(s/1 \) the union of the successor functions on the natural numbers and on the integers. Define the interpretation \(I \) with pre-interpretation \(J_0 \) as follows: the interpretation of \(\text{even}/1 \) is

\[
\{ \text{even}(2 \times n)^t, \text{even}(2 \times n + 1)^f \mid n \in \mathbb{N} \} \cup \{ \text{even}(z)^u \mid z \in \mathbb{Z} \},
\]

and the interpretation of \(\text{odd}/1 \) is

\[
\{ \text{odd}(2 \times n)^f, \text{odd}(2 \times n + 1)^t \mid n \in \mathbb{N} \} \cup \{ \text{odd}(z)^u \mid z \in \mathbb{Z} \}.
\]

Then \(I \) is a 3-valued model of \(T_1 \cup T_2 \). It is obvious though, that only Herbrand interpretations are relevant w.r.t. this theory, and it is clear that \(T_1 \cup T_2 \) has only 2-valued Herbrand models. In fact, there is only one, namely

\[
\{ \text{even}(s^{2n}(0)), \text{odd}(s^{2n+1}(0)) \mid n \in \mathbb{N} \}.
\]

Hence, \(T_1, T_2 \) and \(T_1 \cup T_2 \) are correct w.r.t. \(\mathcal{H} \). Applying theorem 3.2, with \(\mathcal{J} = \mathcal{H} \), gives us the inclusion

\[
\text{Mod}^{\mathcal{H}} (T_1 \cup T_2) \subseteq \text{Mod}^{\mathcal{H}} (T_1) \cap \text{Mod}^{\mathcal{H}} (T_2).
\]

As we will see later (theorem 4.2), there's actually an equality here.
4 The justification condition

The aim of this section is to provide a general condition on T_1 and T_2, so that the equality

$$\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2)$$

holds, or equivalently, so that the consequences of $T_1 \cup T_2$ are exactly those formulas which are true in every interpretation which is a model of T_1 and of T_2. We first give some motivating examples.

4.1 Motivating examples

In the first example the predicates defined in T_2 are all 'new', that is, they don't occur in T_{id}.

Example 4.1

$$T_1 : \begin{cases}
\text{parent}(X,Y) & \leftarrow \text{father}(X,Y) \\
\text{parent}(X,Y) & \leftarrow \text{mother}(X,Y) \\
\text{father}(a,b) & \leftarrow \top \\
\text{mother}(b,c) & \leftarrow \top
\end{cases}$$

$$T_2 : \begin{cases}
\text{anc}(X,Y) & \leftarrow \text{parent}(X,Y) \\
\text{anc}(X,Y) & \leftarrow \text{anc}(X,Z), \text{parent}(Z,Y)
\end{cases}$$

The first theory T_1 defines the predicate parent/2 in terms of the predicate father/2 and mother/2, for which there are given some facts. The second theory T_2 defines the predicate anc/2 in terms of itself and parent/2.

In this case the equality (*) holds. Looking for instance at Herbrand interpretations, we see that the only Herbrand interpretation which is a model of T_1 and of T_2 is the interpretation $I = \{\text{father}(a,b), \text{mother}(b,c), \text{parent}(a,b), \text{parent}(b,c), \text{anc}(a,b), \text{anc}(b,c), \text{anc}(a,c)\}$. It is easily seen that I is the unique Herbrand model of $T_1 \cup T_2$.

Next we give an example in which clauses of T_2 have predicates in their body which are defined in T_1, and vice versa (hence, there is a kind of mutual dependency between T_1 and T_2). In this example the equality (*) doesn't hold, and we have a strict inclusion.

Example 4.2

$$T_1 : \begin{cases}
\text{parent}(X) & \leftarrow \text{father}(X) \\
\text{parent}(X) & \leftarrow \text{mother}(X) \\
\text{father}(X) & \leftarrow \text{parent}(X), \text{male}(X)
\end{cases}$$

$$T_2 : \begin{cases}
\text{mother}(X) & \leftarrow \text{parent}(X), \text{female}(X) \\
\text{male}(a) & \leftarrow \top
\end{cases}$$

In T_1 parent/1 is defined in terms of father/1 and mother/1, while in T_2 father/1 and mother/1 are defined in terms of parent/1.

The Herbrand interpretation $I = \{\text{male}(a), \text{parent}(a), \text{father}(a)\}$ is a model of both T_1 and T_2, but it is not a model of $T_1 \cup T_2$. The only Herbrand model of $T_1 \cup T_2$ is $I' = \{\text{male}(a)\}$.

Example 4.2 suggests that the condition to be put on T_1 and T_2 to obtain the equality (*) is that only 'new' predicates (i.e. predicates not occurring in T_{id}) can be defined in T_2. This condition is surely sufficient (see theorem 6.3 in section 6), but is not necessary, as is shown by the following example.
Example 4.3

\[T_1 : \{ \text{grpar}(X,Y) \leftarrow \text{parent}(X,Z), \text{parent}(Z,Y) \} \]

\[T_2 : \{
\begin{align*}
\text{parent}(a,b) & \leftarrow \top \\
\text{parent}(b,c) & \leftarrow \top \\
\text{parent}(c,d) & \leftarrow \top
\end{align*}
\}
\]

\(T_3 \) defines \text{gr-grpar}/2 in terms of \text{grpar}/2 and \text{parent}/2, and \text{grpar}/2 is defined in \(T_1 \) in terms of \text{parent}/2, which is defined in \(T_2 \).

The equality \((*)\) holds. For instance, the only Herbrand interpretation which is a model of \(T_1 \) and of \(T_2 \) is \{\text{parent}(a,b), \text{parent}(b,c), \text{parent}(c,d), \text{grpar}(a,c), \text{grpar}(b,d), \text{gr-grpar}(a,d)\}, and this is the unique Herbrand model of \(T_1 \cup T_2 \).

Comparing the last two examples, we see that in example 4.2 the dependency between the defined predicates in \(T_1 \) and the defined predicates in \(T_2 \) is an 'infinite' one:

- \text{parent}/1 (\(T_1 \)) is defined in terms of \text{father}/1 (\(T_2 \)),
- \text{father}/1 (\(T_2 \)) is defined in terms of \text{parent}/1 (\(T_1 \)),
- \text{parent}/1 (\(T_1 \)) is defined in terms of \text{father}/1 (\(T_2 \)),
- \text{parent}/2 (\(T_1 \)) is defined in terms of \text{grpar}/2 (\(T_2 \)),
- \text{grpar}/2 (\(T_2 \)) is defined in terms of \text{parent}/2 (\(T_2 \)),
- \text{parent}/2 (\(T_2 \)) is defined totally in \(T_2 \).

Whereas in example 4.3, the dependency is a 'finite' one:

- \text{dead}/2 (\(T_2 \)) is defined in terms of \text{grpar}/2 (\(T_1 \)),
- \text{grpar}/2 (\(T_1 \)) is defined in terms of \text{parent}/2 (\(T_2 \)),
- \text{parent}/2 (\(T_2 \)) is defined totally in \(T_2 \).

A condition in terms of dependency relations is discussed in the next sections. We now give an example which requires a more general condition. The equality \((*)\) holds, although the dependency between the defined predicates in \(T_1 \) and the defined predicates in \(T_2 \) is an infinite one.

Example 4.4

\[T_1 : \{ \text{dead} \leftarrow \neg \text{alive}, \neg \text{dancing} \}
\]

\[T_2 : \{ \text{alive} \leftarrow \neg \text{dead} \}
\]

The predicates \text{dead} (\(T_1 \)) and \text{alive} (\(T_2 \)) depend on each other. But the equality \(\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2) \) holds. Indeed, the intersection of \(\text{Mod}(T_1) \) and \(\text{Mod}(T_2) \) consists of one interpretation \{\text{dancing}^t, \text{alive}^t, \text{dead}^f\}, which is the only model of \(T_1 \cup T_2 \).

In Event Calculus, there is a broad class of examples for which, like example 4.4, the equality \((*)\) holds although there is an infinite kind of dependency between the defined predicates in \(T_1 \) and the defined predicates in \(T_2 \). These examples require a more general condition. In the following subsection we define the justification condition, which subsumes all the following conditions given in sections 5 and 6. We will also give an example in a sort of Event Calculus to illustrate the justification condition.

4.2 The justification condition

Definition 4.1 Two theories \(T_1 \) and \(T_2 \) satisfy the justification condition if for each interpretation which is a model of the FOL axioms \(T_1c \cup T_2c \) it holds that for any fact \(F \), if there
is a justification of F in $T_{1d} \cup T_{2d}$ with only true leaves (or no leaves) and an infinite branch with an infinite number of facts defined in T_1 and an infinite number of facts defined in T_2, then there is a strong justification of F in $T_{1d} \cup T_{2d}$.

Now we are able to give the main theorem.

Theorem 4.1 Given two correct theories T_1 and T_2. If T_1 and T_2 satisfy the justification condition, then

$$\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2).$$

For the proof of theorem 4.1 we first need the following lemma.

Lemma 4.1 Given two correct theories T_1 and T_2 and a model M of $T_1 \cup T_2$. Let F be a fact of a predicate defined in T_1 (resp. T_2) with $\mathcal{H}_M(F) = u$. Then there is a weak justification of F in T_1 (resp. T_2) with a leaf G defined in T_2 (resp. T_1) and $\mathcal{H}_M(G) = u$.

Proof Suppose that, given the conditions, the conclusion of the lemma doesn't hold. Then for every justification J of F in T_1 with value u, the facts defined in T_2 occurring as leaf of J have value t. Consider the incomplete interpretation M_0' on the facts open in T_1, with the same pre-interpretation as M and truth function $\mathcal{H}_{M_0'}$ on the open facts in T_1 defined as follows: $\mathcal{H}_{M_0'} = \mathcal{H}_M$ on the facts open in $T_1 \cup T_2$ and on the facts G defined in T_2 with $\mathcal{H}_M(G) \neq u$, and $\mathcal{H}_{M_0'}(G) = t$ on the other facts G defined in T_2. Hence M_0' is 2-valued on the facts open in T_1 and $\mathcal{H}_{M_0'} = \mathcal{H}_M$ on the facts defined in T_2 occurring as leaf in the justifications of F in T_1 with value u. Then there is a unique interpretation M' extending M_0' to all the facts such that M' is a justified model of T_{1d} (theorem 2.2).

By the construction of M_0' and M' it is clear that $SV_{T_1}^T(M', F) = SV_{T_1 \cup T_2}^T(M, F) = u$, hence $\mathcal{H}_M(F) = u$.

It is sufficient to prove that M' is a model of the FOL axioms T_{1c}. Indeed, this gives a contradiction with the assumption that T_1 has only 2-valued models. We proof that M is F-weaker than $M' \ (M \leq_F M')$, i.e. for each positive fact G which is true or false according to M, $\mathcal{H}_M(G) = \mathcal{H}_{M'}(G)$. Then, because M is a model of T_{1c}, M' is a model of T_{1c} (we can prove by induction on the structure of an axiom ϕ if ϕ is t or f according to M, $\mathcal{H}_M(\phi) = \mathcal{H}_{M'}(\phi)$).

Given a fact G. If G is open in T_1 and $\mathcal{H}_M(G)$ is t or f, then $\mathcal{H}_M(G) = \mathcal{H}_{M'}(G)$ by construction of M'. Suppose G is defined in T_1 and $\mathcal{H}_M(G) = t$. Then there is a justification J of G in $T_1 \cup T_2$ with all branches true under M. Let J_1 be the justification of G in T_1 obtained from J by cutting off every branch after his first fact defined in T_2. Then every branch of J_1 has value t under M. Because, concerning the facts open in T_1, we already have that M is F-weaker than M', every branch of J_1 is true under M'. Hence, $SV_{T_1}^T(M', G) = t$ and $\mathcal{H}_{M'}(G) = t = \mathcal{H}_M(G)$. If $\mathcal{H}_M(G) = f$, then $\mathcal{H}_{M'}(\neg G) = t$ and by the previous $SV_{T_1}^T(M', \neg G) = t$. By the consistency theorem (2.1) $SV_{T_1}^T(M', G) = f$ and $\mathcal{H}_{M'}(G) = f = \mathcal{H}_M(G)$. This concludes the proof of the lemma. \square

Proof (of theorem 4.1)

To prove the inclusion $\text{Mod}(T_1 \cup T_2) \subseteq \text{Mod}(T_1) \cap \text{Mod}(T_2)$, it is sufficient to prove, by theorem 3.1, that each model of $T_1 \cup T_2$ is 2-valued. Let M be a model of $T_1 \cup T_2$ and assume there is a fact F (defined in T_1) with $\mathcal{H}_M(F) = u$. Applying the previous lemma, there is a justification J_1 of F in T_1 with $\text{val}_M(J_1) = u$ and there is a leaf G
of \(J_1 \), defined in \(T_2 \), with \(\mathcal{H}_M(G) = u \). We can extend \(J_1 \) by adhering to each true leaf, defined in \(T_2 \), a strong justification in \(T_1 \cup T_2 \) (there exists one because \(M \) is a model of \(T_1 \cup T_2 \)) and by adhering to each unknown leaf (like \(G \)) a weak justification \(J_2 \) in \(T_2 \) (there exists one according to the previous lemma). We can repeat this process (on \(G \) and \(J_1 \) instead of \(F \) and \(J_1 \)) and because of the lemma it will not stop. Hence, there exists an interpretation \((M)\), model of \(T_{1c} \cup T_{2c} \), and there is a fact \((F)\) which has a justification with only true leaves and an infinite branch with an infinite number of facts defined in \(T_1 \) and an infinite number of facts defined in \(T_2 \) and \(F \) has no strong justification. This contradicts the justification condition, so \(\mathcal{H}_M(F) = u \) is impossible and the first inclusion is proved.

To prove the other inclusion, let \(M \) be a model of \(T_1 \) and of \(T_2 \). By the monotonicity of FOL it is clear that \(M \) is a model of \(T_{1d} \cup T_{2d} \). To prove that \(M \) is a justified model of \(T_{1d} \cup T_{2d} \), we take a fact \(F \) and prove that \(SV^{T_{1d} \cup T_{2d}}(M,F) = \mathcal{H}_M(F) \). This is clear when \(F \) is open in \(T_1 \cup T_2 \) (note that \(M \) is 2-valued). Suppose \(F \) is defined in \(T_1 \) (analogously for \(T_2 \)) and \(\mathcal{H}_M(F) = t \). Because \(\mathcal{H}_M(F) = SV^{T_{1d}}(M,F) \), there exists a strong justification \(J_1 \) of \(F \) in \(T_1 \), i.e. with every branch value \(t \). Extending \(J_1 \), we are going to build a justification \(J \) of \(F \) in \(T_1 \cup T_2 \). We do this by adhering to each leaf of \(J_1 \) which is a defined fact in \(T_2 \) a strong justification in \(T_2 \) (there exists one because the leaves have truth value \(t \) and \(M \) is a model of \(T_2 \)). We repeat this process. If it stops, we obtain a strong justification of \(F \) in \(T_1 \cup T_2 \) and hence \(SV^{T_{1} \cup T_{2}}(M,F) = \mathcal{H}_M(F) = t \). If it doesn’t stop, there is an interpretation \((M)\), model of \(T_{1c} \cup T_{2c} \), a fact \((F)\) and a justification of \(F \) in \(T_1 \cup T_2 \) with only true leaves and an infinite branch with an infinite number of facts defined in \(T_1 \) and an infinite number of facts defined in \(T_2 \). Because of the justification condition \(F \) has a strong justification in \(T_1 \cup T_2 \). Hence, \(SV^{T_{1} \cup T_{2}}(M,F) = \mathcal{H}_M(F) = t \). Suppose next that \(\mathcal{H}_M(F) = f \). Then \(\mathcal{H}_M(\neg F) = t \) and by the previous we know that \(SV^{T_{1} \cup T_{2}}(M,\neg F) = t \). By the consistency theorem (2.1), \(SV^{T_{1} \cup T_{2}}(M,F) = f \) and hence \(SV^{T_{1} \cup T_{2}}(M,F) = \mathcal{H}_M(F) \). This concludes the proof of the theorem.

Theorem 4.1 implies that if \(T_1 \) and \(T_2 \) are correct and if they satisfy the justification condition, then \(T_1 \cup T_2 \) is also correct.

Example 4.5 Reconsider example 3.5 of the previous section. \(T_1 \) and \(T_2 \) don’t satisfy the justification condition. Indeed, for each interpretation with pre-interpretation \(J_0 \) the justification of a fact \(\text{even}(z) \) (analogously \(\text{odd}(z) \)), \(z \in \mathbb{Z} \), is an infinite branch with infinitely many facts defined in \(T_1 \) (the even-facts) and infinitely many facts defined in \(T_2 \) (the odd-facts), and there is no justification for \(\text{even}(z) \) (analogously for \(\text{odd}(z) \)) with value \(t \).

As was already shown in example 3.5 the only model of \(T_1 \cup T_2 \) with pre-interpretation \(J_0 \) is 3-valued and the equality (**) doesn’t hold.

But, as we mentioned before, the only interpretations that really matter here are the Herbrand interpretations. Looking at Herbrand interpretations only, we can see that every justification of a fact is finite. Hence, for Herbrand interpretations the justification condition is satisfied and it holds that \(\text{Mod}^H(T_1 \cup T_2) = \text{Mod}_1^H(T_1) \cap \text{Mod}_2^H(T_2) \).

These observations lead to the following definition and theorem.

Definition 4.2 Given a class of interpretations \(J \). Two theories \(T_1 \) and \(T_2 \) satisfy the justification condition w.r.t. \(J \) if for each interpretation of \(J \) which is a model of the FOL axioms
it holds that for any fact \(F \), if there is a justification of \(F \) in \(T_{1d} \cup T_{2d} \) with only true leaves (or no leaves) and an infinite branch with an infinite number of facts defined in \(T_1 \) and an infinite number of facts defined in \(T_2 \), then there is a strong justification of \(F \) in \(T_{1d} \cup T_{2d} \).

When \(J \) is the class of all interpretations, we simply get the justification condition as stated in definition 4.1. The next theorem uses this concept to generalise theorem 4.1.

Theorem 4.2 Given a class of interpretations \(J \) and two theories \(T_1 \) and \(T_2 \) correct w.r.t. \(J \). If \(T_1 \) and \(T_2 \) satisfy the justification condition w.r.t. \(J \), then

\[
\text{Mod}^J(T_1 \cup T_2) = \text{Mod}^J(T_1) \cap \text{Mod}^J(T_2).
\]

Proof The proof is analogous to the proof of theorem 4.1. We now consider only interpretations of \(J \).

Hence, if \(T_1 \) and \(T_2 \) correct w.r.t. \(J \) and if they satisfy the justification condition w.r.t. \(J \), then \(T_1 \cup T_2 \) is correct w.r.t. \(J \). The theories \(T_1 \) and \(T_2 \) of example 4.5 satisfy the conditions of theorem 4.2 with \(J = \mathcal{H} \).

We will now give an example similar to Event Calculus.

Example 4.6

\[
\begin{align*}
T_1 : & \quad \text{on}(T) \quad \leftarrow \quad \text{sw}(E), \quad E < T, \quad \text{off}(E), \\
& \quad \text{swturn}(E, T) \\
T_2 : & \quad \text{off}(T) \quad \leftarrow \quad \text{sw}(E), \quad E < T, \quad \text{on}(E), \\
& \quad \text{swturn}(E, T)
\end{align*}
\]

Suppose we have a situation in which there is a lamp and a switch. The lamp can be on or off on a certain time. When the lamp is on and we turn the switch, the lamp will be off and vice versa. The lamp is on (resp. off) on a certain time \(T \) if there is an event \(E \) before \(T \) on which the lamp was off (resp. on) and on which there was a switch and such that there were no switches between \(E \) and \(T \).

A first expert defines the predicate \(\text{on}/1 \) in terms of the predicate \(\text{off}/1 \), of which he has no knowledge, resulting in the theory \(T_1 \), and a second expert defines the predicate \(\text{off}/1 \) in terms of the predicate \(\text{on}/1 \), of which he has no knowledge, resulting in the theory \(T_2 \). We would like to know if the union of these two theories contains exactly the sum of the knowledges of the two experts. In particular, we would like to know if the equality

\[
\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2)
\]

holds. This is not the case. Consider for instance the class of interpretations \(F \) with domain \(\mathbb{R} \) (the real numbers), the interpretation of the open predicate \(<\) just the 'smaller than' relation on the real numbers and the interpretation of the open predicate \(\text{sw}/1 \):

\[
\{ \text{sw}(z)^t \mid z \in \mathbb{Z} \} \cup \{ \text{sw}(r)^v \mid r \in \mathbb{R} - \mathbb{Z} \}.
\]

Consider the interpretation \(I \) in \(F \) with the interpretation of \(\text{swturn}/2 \):

\[
\{ \text{swturn}(r, s)^t \mid r, s \in \mathbb{R}, \ r < s, \ \exists z \in \mathbb{Z} : z \in [r, s) \}
\]
and all the other sw-turn-facts false, the interpretation of on/1:
\[\{ \text{on}(r)^\mathcal{F} \mid r \in \mathbb{R}, \exists z \in \mathbb{Z} : 2z < r \leq 2z + 1 \} \]
and all the other on-facts false and the interpretations of off/1:
\[\{ \text{off}(r)^\mathcal{F} \mid r \in \mathbb{R}, \exists z \in \mathbb{Z} : 2z - 1 < r \leq 2z \} \]
and all the other off-facts false. Then I is a model of \(T_1 \) and of \(T_2 \). But I is not a model of the union \(T_1 \cup T_2 \). Indeed, the only interpretation in \(\mathcal{F} \) which is a model of \(T_1 \cup T_2 \) assigns to all on-facts and all off-facts truth value \(\mathcal{F} \) (every justification in \(T_1 \cup T_2 \) of these facts has a positive loop consisting of on- and off-facts).

Now suppose that both experts have the following a priori knowledge, represented by the class \(\mathcal{J} \) of all interpretations in which this a priori knowledge is true. The experts both know that the domain is \(\mathbb{R}^+ \) (the positive real numbers), the interpretation of the open predicate \(< /2 \) is the 'smaller than' relation on the positive real numbers, they know that \(\text{off}(0) \) is true (representing the fact that initially the light is off) and they both have complete knowledge about the open predicate sw/1:
\[\{ \text{sw}(n)^\mathcal{J} \mid n \in D \} \cup \{ \text{sw}(r)^\mathcal{F} \mid r \in \mathbb{R}^+ - D \} \]
where \(D \) is a fixed subset of \(\mathbb{N} \), modelling the fact that at each natural number of \(D \) there is a switch. \(D \) can be for instance \(\mathbb{N} \) or a finite subset of the natural numbers.

Then \(T_1, T_2 \) satisfy the justification condition w.r.t. \(\mathcal{J} \). Indeed, take an arbitrary interpretation in \(\mathcal{J} \). It is obvious that all justifications of the sw-turn-facts in \(T_1 \cup T_2 \) are finite. We now take a closer look at the justifications in \(T_1 \cup T_2 \) of the on-facts (analogously for the off-facts).

The justifications of an on-fact, \(\text{on}(t) \) (\(t \in \mathbb{R}^+ \)), with only true leaves are always finite. This is because, starting from a given \(t \in \mathbb{R}^+ \), each elementary justification of \(\text{on}(t) \) is of the form \(\{ \text{sw}(e), e < t, \text{off}(e), \neg \text{sw-turn}(e, t) \} \). The fact \(\text{sw}(e) \) is true only if \(e \in D \). The fact \(e < t \) is true only if \(e \) is taken smaller than \(t \). Hence, in a justification of \(\text{on}(t) \) with only true leaves, \(e < t \) and \(e \in D \). We can then repeat the same reasoning for the fact \(\text{off}(e) \). Because the domain of all the interpretations in \(\mathcal{J} \) is \(\mathbb{R}^+ \), each justification of \(\text{on}(t) \) with only true leaves is finite.

By applying theorem 4.2 (note that \(T_1 \) and \(T_2 \) are correct w.r.t. \(\mathcal{J} \)) we get
\[\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2). \]
Intersecting \(\text{Mod}^\mathcal{J}(T_1) \) and \(\text{Mod}^\mathcal{J}(T_2) \), we obtain only one interpretation. Let \(D = \{ n_1, n_2, \ldots \} \subseteq \mathbb{N} \) and let \(n_0 = 0 \), then the unique interpretation of \(\text{Mod}^\mathcal{J}(T_1 \cup T_2) \) is given as follows: the true on-facts are given by
\[\{ \text{on}(r) \mid n_{i+1} < r \leq n_{i+2} \text{ and } i \in \mathbb{N} \} \]
(all the other on-facts are false) and the true off-facts are given by
\[\{ \text{off}(r) \mid n_i < r \leq n_{i+1} \text{ and } i \in \mathbb{N} \} \cup \{ \text{off}(0) \} \]
(and all the other off-facts are false).

The justification condition is a very general condition from which many other conditions can be deduced, like for instance the next proposition, which is an easy corollary to theorem 4.2.
Proposition 4.1 Given a class of interpretations \(\mathcal{J} \) and two theories \(T_1 \) and \(T_2 \) correct w.r.t. \(\mathcal{J} \). If for each interpretation in \(\mathcal{J} \), which is a model of the FOL axioms \(T_{1c} \cup T_{2c} \), it holds that for every fact \(F \), \(F \) or \(\neg F \) has a strong justification of finite depth in \(T_{1d} \cup T_{2d} \), then
\[
\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2).
\]

Proof Suppose that for each interpretation in \(\mathcal{J} \) and for every fact \(F \) it holds that \(F \) or \(\neg F \) has a strong justification of finite depth in \(T_{1d} \cup T_{2d} \). We prove that \(T_{1d}, T_{2d} \) satisfy the justification condition. Then the proposition is a direct consequence of theorem 4.2. Suppose there is an interpretation \(I \) in \(\mathcal{J} \) and a fact \(F \) which has a justification \(J_1 \) in \(T_{1d} \cup T_{2d} \) with only true leaves (or no leaves) and with an infinite branch with an infinite number of facts defined in \(T_{1d} \) and an infinite number of facts defined in \(T_{2d} \) and suppose \(F \) has no strong justification in \(T_{1d} \cup T_{2d} \). We prove that this is impossible. Because \(F \) has no strong justification in \(T_{1d} \cup T_{2d} \), \(\neg F \) has a strong justification \(J_2 \) of finite depth in \(T_{1d} \cup T_{2d} \). By the definition of justification, there is a branch \(B_1 \) in \(J_1 \) and a branch \(B_2 \) in \(J_2 \) such that \(B_1 = \neg B_2 \). But this means that \(B_1 \) has a false leaf, which gives a contradiction. \(\square \)

In the next sections we introduce some stronger, but more syntactical conditions on the theories \(T_1 \) and \(T_2 \) such that \((*)\) still holds.

5 A more syntactical condition for propositional theories

In this section we restrict ourselves to propositional theories, based on a propositional language \(\mathcal{L} \). In the next section we extend to the predicate case again.

Given a propositional language \(\mathcal{L} \) and a theory \(T = (T_d, T_c) \) based on \(\mathcal{L} \), let \(\succ \) denote the dependency relation on the proposition symbols of \(T \). Recall that the dependency relation is the transitive closure of the relation \(\succ_1 \), with \(p \succ_1 q \) if there’s a clause in \(T_d \) with head \(p \), and \(q \) or \(\neg q \) in the body. If \(p \succ q \), we say that \(p \) depends on \(q \).

We now introduce a condition on the propositional theories \(T_1 \) and \(T_2 \) in terms of this dependency relation. The next theorem states that if \(T_1 \) and \(T_2 \) satisfy this new condition, the equality \((*)\) holds.

Theorem 5.1 Given a propositional language \(\mathcal{L} \) and two correct theories \(T_1 \) and \(T_2 \) based on \(\mathcal{L} \). Consider the dependency relation \(\succ \) on the proposition symbols of \(T_1 \cup T_2 \). If for each descending sequence \(K \) of proposition symbols, there is an \(i \in \{1, 2\} \) such that the proposition symbols defined in \(T_i \) appear only finitely many times in the sequence \(K \), then \(\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2) \).

Proof It is clear by the definition of a justification (definition 2.3) that if \(T_1 \) and \(T_2 \) satisfy the condition of the theorem, there are no justifications in \(T_{1d} \cup T_{2d} \) with an infinite branch with an infinite number of facts defined in \(T_1 \) and an infinite number of facts defined in \(T_2 \). Hence, by the definition of justification condition (definition 4.1), \(T_1 \) and \(T_2 \) satisfy the justification condition. The theorem follows then from theorem 4.1. \(\square \)

The condition given in theorem 5.1 is sufficient, but not necessary, as was shown in example 4.4.
6 A more syntactical condition for predicate theories

We return to the case of a first order language L and two theories T_1 and T_2 based on L.

6.1 Condition in terms of dependency relation

When we only want to consider Herbrand interpretations, we can use the result of the previous section. Let $\text{Ground}(T_1 \cup T_2)$ denote the grounding of $T_1 \cup T_2$ (i.e. of the logic program part and of the FOL axioms) w.r.t. the Herbrand universe. We assume that for each ground atom p of a defined predicate symbol such that no ground instantiation of a clause has p in the head, the grounding contains the rule $p \leftarrow \bot$.

Theorem 6.1 Given two theories T_1 and T_2 which are correct w.r.t. \mathcal{H}. Consider the dependency relation \succ on the ground atoms of $\text{Ground}(T_1 \cup T_2)$. If for each descending sequence K of ground atoms, there is an $i \in \{1, 2\}$ such that the ground atoms defined in T_i appear only finitely many times in the sequence K, then $\text{Mod}^\mathcal{H}(T_1 \cup T_2) = \text{Mod}^\mathcal{H}(T_1) \cap \text{Mod}^\mathcal{H}(T_2)$.

Proof The grounding of a theory can be treated as a propositional program. This theorem is then a direct consequence of theorem 5.1.

If T_1 and T_2 are correct w.r.t. \mathcal{H} and satisfy the condition of theorem 6.1, then $T_1 \cup T_2$ is also correct w.r.t. \mathcal{H}.

Sometimes it is not enough to consider only Herbrand interpretations. For this reason, let’s define in the usual way the dependency relation \succ on the predicate symbols of $T_1 \cup T_2$. Analogously as in the previous section (see theorem 5.1), we obtain the following result.

Theorem 6.2 Given a class of interpretations \mathcal{J} and two theories T_1 and T_2 correct w.r.t. \mathcal{J}. Consider the dependency relation on the predicate symbols of $T_1 \cup T_2$. If for each descending sequence K of predicate symbols there is an $i \in \{1, 2\}$ such that the predicate symbols defined in T_i appear only finitely many times in the sequence K, then $\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2)$.

Hence $T_1 \cup T_2$ is also correct w.r.t. \mathcal{J}. Examples 4.1 and 4.3 of section 4 satisfy the conditions of theorem 6.2, with \mathcal{J} the class of all interpretations, whereas example 4.2 does not. We give another nice example.

Example 6.1

\begin{align*}
T_1 & : \left\{ \begin{array}{l}
even(0) \leftarrow \top \\
\even(s(X)) \leftarrow \odd(X) \\
\end{array} \right. \\
T_2 & : \left\{ \begin{array}{l}
\odd(s(X)) \leftarrow \even(X) \\
\end{array} \right.
\end{align*}

First note that the equality $\text{Mod}(T_1 \cup T_2) = \text{Mod}(T_1) \cap \text{Mod}(T_2)$ does not hold. Indeed, consider the 2-valued non-Herbrand interpretation \mathcal{I} with pre-interpretation \mathcal{I}_0 (see example 3.5), the interpretation of $\even/1$

\[\{\even(2 \times n)^t, \even(2 \times n + 1)^t \mid n \in \mathbb{N}\} \cup \{\even(z)^t \mid z \in \mathbb{Z}\}, \]

and the interpretation of $\odd/1$

\[\{\odd(2 \times n)^t, \odd(2 \times n + 1)^t \mid n \in \mathbb{N}\} \cup \{\odd(z)^t \mid z \in \mathbb{Z}\}. \]
Then I is a non-Herbrand model of T_1 and of T_2. But I is not a model of $T_1 \cup T_2$, because the only model of $T_1 \cup T_2$ with pre-interpretation I_0 assigns truth value \top to all facts $\text{even}(z), \text{odd}(z)$ with $z \in \mathbb{Z}$.

But again, the only interpretations which are important w.r.t. these theories are the Herbrand interpretations. And for these interpretations the equality holds, i.e.

$$\text{Mod}^H(T_1 \cup T_2) = \text{Mod}^H(T_1) \cap \text{Mod}^H(T_2).$$

To prove this, we take the grounding of $T_1 \cup T_2$:

$$
\begin{align*}
\text{even}(0) & \leftarrow \top \\
\text{even}(s(0)) & \leftarrow \text{odd}(0) \\
\ldots \\
\text{even}(s^n(0)) & \leftarrow \text{odd}(s^n(0)) \\
\ldots \\
\text{odd}(0) & \leftarrow \bot \\
\text{odd}(s(0)) & \leftarrow \text{even}(0) \\
\ldots \\
\text{odd}(s^n(0)) & \leftarrow \text{even}(s^n(0)) \\
\ldots
\end{align*}
$$

Then it is easy to check that T_1 and T_2 satisfy the conditions of theorem 6.1 (every descending sequence of ground atoms of $T_1 \cup T_2$ is finite). It is also easy to see that $T_1 \cup T_2$ has a unique 2-valued Herbrand model given by

$$\{ \text{even}(s^n(0)), \text{odd}(s^{n+1}(0)) \mid n \in \mathbb{N} \}.$$

Note that we can not apply theorem 6.2 (with $\mathcal{J} = \mathcal{H}$) to obtain the same result, because T_1 and T_2 don't satisfy the conditions of that theorem: there is an infinite descending sequence

$$\text{even}/1 \succ \text{odd}/1 \succ \text{even}/1 \succ \ldots,$$

with $\text{even}/1$ defined in T_1 and $\text{odd}/1$ in T_2.

In the last two subsections of this section we give some even stronger, syntactical conditions on T_1 and T_2 to obtain \ast.

6.2 Conservative extensions

We first need some notation. Given a theory $T = (T_d, T_c)$. Let $\text{Head}(T_d)$ denote the set of all predicate symbols occurring in the head of a clause of T_d. Let $\text{Pred}(T_d)$ denote the set of all predicate symbols occurring in T_d. The following theorem is a direct consequence of theorem 6.2.

Theorem 6.3 Given a class of interpretations \mathcal{J} and two theories T_1 and T_2 correct w.r.t. \mathcal{J}. If $\text{Head}(T_{2d}) \cap \text{Pred}(T_{1d}) = \emptyset$, then $\text{Mod}^\mathcal{J}(T_1 \cup T_2) = \text{Mod}^\mathcal{J}(T_1) \cap \text{Mod}^\mathcal{J}(T_2)$.

The condition $\text{Head}(T_{2d}) \cap \text{Pred}(T_{1d}) = \emptyset$ means that only predicate symbols not occurring in T_{1d} can be defined in T_{2d}. Hence, predicate symbols defined in T_{1d} can not depend on predicate symbols defined in T_{2d} (the converse is possible though). An example was given in section 4, example 4.1.
Under the conditions of theorem 6.3, we are given a way to construct every model of $T_1 \cup T_2$ by successively finding a model of T_1 and T_2. Let us be more precise. Suppose two correct logic programs T_{1d} and T_{2d} are given and T_{1d} does not refer to the predicate symbols defined in T_{2d}. Suppose $T_{1d} \cup T_{2d}$ is complete. Because T_{1d} does not refer to predicates defined in T_{2d}, every predicate occurring in T_{1d} is also defined in T_{1d}. Given a pre-interpretation J, denote the set of models of T_{1d} with pre-interpretation J by \mathcal{M}_J. It is clear that each model in \mathcal{M}_J has the same truth function on predicate symbols defined in T_{1d}. In the set \mathcal{M}_J there is exactly one interpretation M which is also a model of T_{2d}. Because of the equality, $\text{Mod}(T_{1d} \cup T_{2d}) = \text{Mod}(T_{1d}) \cap \text{Mod}(T_{2d})$, M is a model of $T_{1d} \cup T_{2d}$ and every model of $T_{1d} \cup T_{2d}$ can be obtained in this way. If $T_{1d} \cup T_{2d}$ is incomplete, then, instead of starting with a given pre-interpretation only, we also fix a 2-valued truth function on the predicate symbols open in $T_{1d} \cup T_{2d}$ and then repeat the same reasoning. The reasoning remains valid when adding FOL axioms T_{1c} and T_{2c} to the logic programs. This is because of the monotonicity of FOL; not satisfying T_{1c} or T_{2c} is equivalent with not satisfying $T_{1c} \cup T_{2c}$.

In a way, the logic program $T_d = T_{1d} \cup T_{2d}$ is split into two parts. In [16] Lifschitz and Turner discuss this idea of splitting a logic program in the context of answer set semantics for disjunctive logic programs with classical negation. They call T_{1d} the bottom of T_d and T_{2d} the top of T_d.

A corollary to theorem 6.3 is a property which is in literature often called the conservative extension property. If we extend an initial correct logic program T_{1d} by a correct logic program T_{2d}, which gives only definitions for 'new' predicate symbols (i.e. not occurring in T_{1d}), then for every formula φ, consisting only of predicate symbols defined in T_{1d}, φ is a consequence of T_{1d} if and only if φ is a consequence of $T_{1d} \cup T_{2d}$. This can be proven by induction on the length of the formula φ, using theorem 6.3.

Conservative extensions were studied by Lifschitz and Turner in the context of disjunctive logic programming with classical negation [16], by Gelfond and Przymusinska in the context of extended logic programming [13] and in the context of epistemic specifications [14].

6.3 Hierarchical and acyclic programs

The last results concern hierarchical and acyclic programs. For more details about this kind of programs, see [17] and [1]. We just give their definitions.

Definition 6.1 A logic program T_d is **hierarchical**, if there exists a mapping $\mid \mid$ from $\text{Pred}(T_d)$ to the natural numbers such that for every clause $p(t_1, \ldots, t_n) \leftarrow L_1, \ldots, L_m$ in T_d, $\mid \mid p \mid \mid$ is greater than the value under $\mid \mid$ of each predicate symbol occurring (positively or negatively) in the body.

It is obvious that hierarchical programs cannot have 3-valued models and that each subset of clauses of a hierarchical program is itself hierarchical.

Proposition 6.1 Given a theory $T = (T_d, T_c)$ with T_d a hierarchical logic program. Then T is correct.

Proposition 6.2 Given a hierarchical logic program T_d. Then every $T_{d'} \subseteq T_d$ is hierarchical.

Combining these propositions together with theorem 6.2, with \mathcal{J} the class of all interpretations, gives us:

Theorem 6.4 Given a theory $T = (T_d, T_c)$ with T_d a hierarchical logic program. Then for every $T_1 = (T_{1d}, T_{1c})$ and $T_2 = (T_{2d}, T_{2c})$ such that $T = T_1 \cup T_2$ (and such that every
predicate is defined in at most one theory, either T_1 or T_2), the equality $\text{Mod}(T) = \text{Mod}(T_1) \cap \text{Mod}(T_2)$ holds.

Using induction, we can extend this theorem to split a theory into a finite number of theories. We refer to the very similar case of acyclic programs below for an example of how this is done. When only Herbrand interpretations are relevant w.r.t. the theory, we can put a more general, syntactical restriction on the theory.

Definition 6.2 A logic program T_d is acyclic, if there exists a mapping $| |$ from the Herbrand base to the natural numbers such that for every clause $A \leftarrow B_1, \ldots, B_m, \neg B_{m+1}, \ldots, \neg B_n$ in $\text{Ground}(T_d)$, $|A| > |B_i|$ for every $1 \leq i \leq n$.

Analogously to the case of hierarchical programs, the following properties hold.

Proposition 6.3 Given a theory $T = (T_d, T_c)$ with T_d an acyclic logic program. Then T is correct w.r.t. \mathcal{H}.

Proposition 6.4 Given an acyclic logic program T_d. Then every $T_d \subseteq T_d$ is acyclic.

And as a result of these two propositions and theorem 6.1 we get:

Theorem 6.5 Given a theory $T = (T_d, T_c)$ with T_d an acyclic logic program. Then for every $T_1 = (T_{1d}, T_{1c})$ and $T_2 = (T_{2d}, T_{2c})$ such that $T = T_1 \cup T_2$ (and such that every predicate is defined in at most one theory, either T_1 or T_2), the equality $\text{Mod}^\mathcal{H}(T) = \text{Mod}^\mathcal{H}(T_1) \cap \text{Mod}^\mathcal{H}(T_2)$ holds.

Again, we can extend this theorem to split T into a finite number of theories.

Example 6.2

\[
\begin{align*}
T_1 & : \{ \text{even}(0) \leftarrow \top \\
& \quad \text{even}(s(X)) \leftarrow \text{odd}(X) \\
T_2 & : \{ \text{odd}(s(X)) \leftarrow \text{even}(X) \\
T_3 & : \{ \text{nat}(X) \leftarrow \text{even}(X) \\
& \quad \text{nat}(X) \leftarrow \text{odd}(X)
\end{align*}
\]

It is clear that $T_1 \cup T_2 \cup T_3$ is acyclic. Indeed, consider the mapping $| |$,

\[
\begin{align*}
|\text{even}(s^n(0))| &= n, \\
|\text{odd}(s^n(0))| &= n, \\
|\text{nat}(s^n(0))| &= n + 1
\end{align*}
\]

with $n \in \text{IN}$ and $s^0(0) = 0$. Then for every clause in $\text{Ground}(T_1 \cup T_2 \cup T_3)$ the value under $| |$ of the head is greater than the value of the atom in the body.

The intersection of $\text{Mod}^\mathcal{H}(T_1), \text{Mod}^\mathcal{H}(T_2)$ and $\text{Mod}^\mathcal{H}(T_3)$ gives us the unique Herbrand model of $T_1 \cup T_2 \cup T_3$:

\[
\{ \text{even}(s^n(0)), \text{odd}(s^{n+1}(0)), \text{nat}(s^n(0)) \mid n \in \text{IN} \}.
\]
7 Related works

Prior to composing the logical modules of cooperating K.R. experts, the individual experts face the problem of representing their *incomplete* knowledge as logical modules. Therefore, we believe that the suitability of a logic for modular knowledge representation depends in the first place on its expressivity for representing *incomplete* knowledge. One point on which this study differs from most others is that it investigates the compositionality problem in the context of a knowledge representation logic, OLP-FOL, designed as an extension of logic programming for nonmonotonic knowledge representation in the context of uncertainty [10]. Most related studies modify the logic programming semantics to make it suitable for modular programming but do not investigate the knowledge representation qualities of the resulting logic. An exception is [16], which studies the compositionality problem in the context of Disjunctive Logic Programming.

In some studies in modular logic programming e.g. [7], [3], compositionality of the logic is seen as a first rank requirement; the semantics of the (syntactical) composition of modules is required to be the result of a semantical composition operator on the semantics of the modules. The semantic composition operator under study here is the *logical conjunction* operator. In a logic with a possible state semantics (as for OLP-FOL), this composition operator can be naturally defined by the intersection on the classes of models. As was observed first in [20], compositionality (w.r.t. logical conjunction) and nonmonotonicity are contradictory requirements. More precisely, when a syntactic composition operator is compositional w.r.t. the logical conjunction operator, this syntactic composition operator is monotonic. However, a monotonic logic is not very suitable for knowledge representation. The syntactic composition operator in OLP-FOL is not always compositional and it should not be.

As opposed to most of the works about compositionality, this paper considers logic programs which may contain negation in the body of their clauses. In section 6.2 we mentioned three works [16], [13] and [14] which also allow negation. Other exceptions which also consider negation are [12], [20], [8]. However, either they consider a weaker compositional semantics based on completion semantics [20], or the results are restricted either to hierarchical dependencies between modules, as in [12], or to the case of one module representing a conservative extension of another module [8]. We discuss these three works in more detail. In [12], they consider programs with import predicates (called units); import predicates correspond to open predicates in our approach. An abstract semantics for units is a function taking in input a set of imported literals and producing another set of literals. They present conservative extensions of the well-founded and Fitting's semantics. These semantics are proved to be compositional w.r.t. union of units, i.e. the semantics of the union can be deduced from the semantics of the components. In case of the extension of the well-founded semantics this is only stated if the system of units is hierarchical, that is to say that there is no circular dependency between the units. Although they use a very different terminology and their set-up is different, their approach leans closest to ours. In [20] a compositional semantics (which can be seen as a compositional counterpart of Kunen's semantics) for normal programs based on a first order completion of the program is defined. Definitions which are not explicitly given in the program are not closed and hence those predicates remain open, which is needed in a modular context. Their semantics is compositional while remaining nonmonotonic to a certain extent. In essence, the semantics is compositional and monotonic on the level of composition of modules, while addition of clauses to modules remains a nonmonotonic operation. In [8] a compositional semantics for logic programs is defined which handles inconsistencies locally instead of globally. This semantics fulfills the following composition requirement stating that the meaning of a
program P is not modified if P is extended with a program Q such that none of the atoms defined in P are also defined in Q and no definitions in P depend on atoms defined in Q (the program Q is in fact a conservative extension of the program P).

By allowing predicates to be open in a logic program, we deal with incomplete knowledge on predicates. In [12] import predicates are introduced to represent this kind of incomplete knowledge. In [7], [6] they work with a different notion of open predicates to capture the possible composition with other programs. Their semantics of admissible Herbrand models for definite programs is suited for compositionality problems, but seems less suitable for knowledge representation. In [5] this semantics is extended to normal logic programs by transforming them to open positive programs. Though in this semantics the compositionality problem can be handled elegantly, the semantics is much weaker than ours and seems not suited for knowledge representation and nonmonotonic reasoning.

A special place in the compositionality research is taken by [3], where each definite program is denoted by its immediate consequence operator T_P and not by its set of models. The union of two definite programs can be proven to correspond to a certain operation on the corresponding T_P operators. The result is a highly abstract sort of semantics of a program, which is not really suitable for studying knowledge representation problems, but which allows [3] to define many different composition operators, all in terms of different ways of composing the T_P operators of the distinct modules. In comparison, we investigate only one operator, namely the operator which joins the knowledge of the modules. Recently, the algebraic approach of [3] was extended for normal logic programs [4] using Fitting 3-valued completion operator.

In [2] the problem of modelling the composition by union of definite programs is studied, by considering computed answer substitution as observable behaviour of programs (instead of the more standard notion of success set). To capture this notion of behaviour, programs are denoted by programs (obtained through unfolding) rather than by Herbrand models. The OR-compositional (i.e. compositional w.r.t. program union) semantics of open programs they define, corresponds to a program equivalence notion, according to which two programs P_1 and P_2 are equivalent iff for any program Q, $P_1 \cup Q$ and $P_2 \cup Q$ give the same computed answer substitutions.

Besides uncertainty on predicates, one can also have incomplete knowledge on the domain of discourse. By considering general interpretations, like in [20], we take into account this kind of incomplete knowledge. Other approaches either do not allow to model this kind of incomplete knowledge or model it by allowing Herbrand interpretations of arbitrary extensions of the module language.

In the previous discussed approaches and also in our approach, module composition is seen as a metalinguistic mechanism. Another main direction in the research of compositionality of logic programming formalisms is of a linguistic nature and is seen for instance in [18], [15]. They extend the formalism of Horn clause logic with modal operators in order to provide a richer support for modular programming. In [15], they show that (multi)modal logics are well-suited for supporting the notion of module. Each module is given a name and for each module a modal operator is introduced. They give a modal characterisation of the situation in which the meaning of modules does not depend on the external environment (and on other modules) except for explicit importations. However, they give some hints on how this modal characterisation can also be used to capture the notions of inheritance between modules, of operations on modules such as union or how it can be used to define programs with several modules each one with its own internal language. All this offers lots of possibilities, which are worth investigating further.

For a survey of different kinds of approaches to modularity, we refer to [9].
Note that we did not consider problems such as: parametrised modules, several experts designing definitions for the same concepts, several experts overloading the same predicate symbol to represent different concepts, These are topics for future work.

References

