
An Almost Perfect Abstraction Operator

for Partial Deduction

Michael Leuschel and Danny De Schreye

K.U. Leuven, Department of Computer Science

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

e-mail: fmichael,dannydg@cs.kuleuven.ac.be

January 18, 1995

Abstract

A partial deduction strategy for logic programs usually uses an abstraction operator

to guarantee the �niteness of the set of goals for which partial deductions are produced.

Finding an abstraction operator which guarantees �niteness and still does not loose relevant

information (with respect to the partial deduction) is a di�cult problem. In [4] and [7]

Gallagher and Bruynooghe proposed to base the abstraction operator on characteristic paths

and trees. A characteristic tree captures the structure of the generated partial SLDNF-tree

for a given goal, i.e. it captures the relevant information for partial deduction. The generation

of more general atoms having the same characteristic tree would lead to an almost perfect

abstraction operator. Unfortunately the abstraction operators proposed in [4] and [7] do not

always produce more general atoms and do not always preserve the characteristic trees. In

this paper we propose to solve this problem through the use of constraints in the partial

deduction process. We show that satis�ability of these constraints is decidable and that

they do not introduce a termination problem of their own. We will thus present a partial

deduction strategy which

� has an almost perfect abstraction operator.

� almost perfect control of polyvariance.

� always terminates while ensuring the closedness and independence conditions (slightly

adapted to allow constraints) of [12].

1 Introduction

Partial evaluation has received considerable in logic programming. In [9] Komorowski introduced

the topic in the logic programming setting and later, for pure logic programs, �rst refers to it

as partial deduction. Another milestone is [12], where �rm theoretical foundations for partial

deduction are established. It introduces the notions of independence and closedness, which

are properties of the set of atoms for which the partial deduction is performed. Under these

conditions, soundness and completeness of the transformed program are guaranteed. In the light

of these conditions, a key problem in partial deduction is: given a set of atoms of interest, A,

provide a terminating procedure that computes a new set of atoms, A', and a partial deduction

for the atoms in A', such that:

� every atom in A is an instance of an atom in A', and

� the closedness and independence conditions are satis�ed.

1

Moving from the initial set A to the new set A' requires an abstraction operator. In addition

to the conditions stated above, this abstraction operator should be such that the specialisation

that the partial deduction achieves for the atoms in A' does not loose too much precision wrt

the specialisation that a partial deduction could in principle obtain for the atoms in A.

An approach which achieves all these goals in an elegant and re�ned way is that of Gallagher

and Bruynooghe ([7], [4]). Its abstraction operator is based on the notions of characteristic

path, characteristic tree and most speci�c generalisation. Intuitively, two atoms of A are replaced

by their most speci�c generalisation in A', if their (incomplete) SLDNF-trees under the given

unfolding rule have an identical structure (this structure is referred to as the characteristic

tree). By carefully tuning the various operations involved in the partial deduction algorithm,

this abstraction operator allows to achieve all above mentioned goals.

Unfortunately, although the approach is conceptually appealing, several errors turn up in

arguments provided in [7] and [4]. These errors invalidate the termination proofs as well as the

arguments regarding preservation of specialisation under the abstraction operator. This also

puts serious limitations on the practical results that can be obtained (especially wrt the control

of polyvariance).

In the current paper, we signi�cantly adapt the approach to overcome these problems. We

introduce an alternative abstraction operator, which is based on so called negative binding con-

straints. The partial deduction procedure is then formulated in terms of a special purpose

constraint logic programming language, which computes on the basis of such constraints. The

adapted approach allows to solve all problems with the original formulations in [7] and [4], with-

out loosing the claimed termination and precision properties. As such, we provide evidence that

(a reformulation of) [7] and [4] is correct and provides all claimed bene�ts.

The paper is structured as follows. In the next section we introduce some preliminary notions

and properties. In section 3 we present a general algorithm for partial deduction. Section 4

recalls the notion of a characteristic tree and provides examples of the errors and shortcomings

in [7] and [4]. In section 5 we introduce negative binding constraints, which form the basis of the

new abstraction operator. The next section presents how SLD and SLDNF can be adapted to

incorporate computation on such constraints. Section 7 then reformulates the partial deduction

procedure, using the constraint resolution of the previous section. We end with a brief discussion

on how the approach can be extended to preserve characteristic trees for unfolding rules that

select negative literals or are not determinate and then summarise our results. All proofs and

auxiliary lemmas have been omitted due to space restrictions.

2 Preliminaries and Motivations

In [12] the concept of partial deduction in logic programming was put on a �rm theoretical

basis. The following general description of partial deduction was given. Given a program P and

a goal G, partial deduction produces a new program P

0

which is P \specialised" to the goal G.

The underlying technique is to construct \incomplete" search trees and extract the specialised

program P

0

from these incomplete search trees. The following de�nition formalises this and is

adapted from [12].

De�nition 2.1 (partial deduction)

Let P be a normal program and A an atom. Let � be an incomplete

1

SLDNF tree for P [f Ag,

1

An incomplete SLDNF tree can have arbitrary goal statements as leaves (and not only success and failure

nodes).

2

let G

1

; : : : ; G

n

be the goals in the (non-root) leaves of the non-failing branches of � . Let

�

1

; : : : ; �

n

be the computed answers of the derivations from A to G

1

; : : : ; G

n

respectively.

Then the set of resultants fA�

1

 G

1

; : : : ; A�

n

 G

n

g is called a partial deduction of A in P .

We also introduce the notation resultants(�) to stand for the set fA�

1

 G

1

; : : : ; A�

n

 G

n

g.

resultants(�) is unde�ned if � is an incomplete SLDNF tree consisting only of a single node.

If A is a �nite set of atoms, then the partial deduction of A in P is the union of the partial

deductions of the elements of A. A partial deduction of P wrt A is a normal program obtained

from P by replacing the set of clauses in P whose head contains one of the predicate symbols

appearing in A (called the partially deduced predicates) with a partial deduction of A in P .

In [12] a fundamental theorem for correctness of partial deduction is presented. The two

basic requirements for the correctness of a partial deduction of P wrt A are the independence

and closedness conditions. The independence condition guarantees that the specialised program

does not produce additional answers and the closedness condition guarantees that all calls that

might occur during the execution of the specialised program are covered by some de�nition. The

following summarises the correctness result from [12]:

De�nition 2.2 (A-closed, independence)

Let S be a set of �rst order formulas and A a �nite set of atoms. Then S is A-closed if each

atom in S containing a predicate symbol occurring in an atom in A is an instance of an atom in

A. Furthermore we say that A is independent if no pair of atoms in A have a common instance.

Theorem 2.3 (correctness of partial deduction)

Let P be a normal program, G a normal goal, A a �nite, independent set of atoms, and P

0

a

partial deduction of P wrt A such that P

0

[fGg is A-closed. Then the following hold:

1. P

0

[f Gg has an SLDNF-refutation with computed answer � i� P [f Gg does.

2. P

0

[f Gg has a �nitely failed SLDNF tree i� P [f Gg does.

Note that, if we want our specialised program to be correct for all goals containing instances

of an independent subset of A, the independence condition can always be guaranteed by a

renaming transformation (see for instance [4,5,7], see also [1] for a dynamic renaming strategy).

A small example is treated in the appendix A. Also note that renaming is not the only way

to ensure independence. Another possibility is to use a generalisation operator like the msg

2

.

For instance applying the msg to the dependent set fp(a; Y); p(X; b)g yields the independent set

fp(X; Y)g. This is not always a good idea because a lot of potential for specialisation might be

lost due to the application of the msg. By using a renaming transformation we can avoid this

loss of precision.

While guaranteeing the independence condition can be rather easy, guaranteeing the closed-

ness condition is more di�cult. Usually the set A has to be augmented in some way to guarantee

closedness. This brings along the related problem of termination. In fact when performing par-

tial deduction there are two termination problems:

� Each incomplete SLDNF tree that is constructed for some P [f Ag has to be kept �nite.

For solutions (which don't just simply impose an ad-hoc depth bound) to this non-trivial

problem see for instance [3] and [14].

2

most speci�c generalisation, also known as anti-uni�cation or least general generalisation, see for instance [10].

Below we will see that the msg can play another role in the partial deduction process.

3

� The set A has to be kept �nite while still ensuring the closedness condition. This can be

guaranteed by a proper (well-founded) abstraction operator.

In this paper we address the second termination problem. Quite a few approaches presented

in the literature so far do not address this problem (i.e. non-termination can occur, even when

using the msg to ensure closedness and independence

3

). Others impose a �nite number of atoms

in A and use the msg to stick to that �nite number. An example of the second approach is [15].

For a recent approach presenting a re�ned framwork ensuring global termination see [16].

However, as we have seen above, using the msg can induce a loss of precision. In this case

the loss of precision can even be more dramatic, as the msg will also be applied on independent

atoms. For instance calculating the msg for the set of atoms fsolve(p(a)); solve(q(f(b)))g yields

the atom solve(X). The basic purpose of this paper is to present an abstraction operator which

does not show this dramatic loss of precision while still guaranteeing termination of the partial

deduction process.

3 The General Algorithm

In this section we present a general algorithm for partial deduction. The following de�nitions

are based on ideas from [4,5, 7].

De�nition 3.1 (unfolding rule)

An unfolding rule U is a function which given a program P and a goal G returns an incomplete

SLDNF tree for P [fGg. A well-founded unfolding rule U is an unfolding rule such that for every

program P and and every atomic goal A it returns a SLDNF tree � such that resultants(�)

is a �nite set of resultants that is a partial deduction of A in P .

If A is a �nite set of atoms and P is a program, then the set of resultants obtained by applying

a well-founded unfolding rule U to each atom in A and taking the union of all resultants of the

generated SLDNF trees is called the partial deduction of A in P using U .

One particular unfolding rule (which is well-founded given a depth bound) presented in [7] is

based on unfolding only determinate sections (variations involving for instance \lookaheads" can

be found in [4,5]). Basically this rule stops unfolding after a choice-point has been encountered.

We will de�ne the class of determinate unfolding rules as follows:

De�nition 3.2 (determinate unfolding)

A tree is determinate if the root node is not a leaf node and if each node has either at most 1

child or has only leaves as its children. An unfolding rule is determinate if for every program P

and every goal G it returns a determinate SLDNF tree.

Determinate unfolding does not modify the backtracking behaviour of the original program

(under the condition that the last unfolding step, which can be non-determinate, follows the

computation rule of the underlying system). Further motivations behind determinate unfolding

can be found in [4, 5, 7]. The de�nition of determinate unfolding can be improved by using

lookaheads to detect resolvents which are \dead" (see [4, 5]). We will return to this later.

De�nition 3.3 (abstract)

An operation abstract(S) is any operation satisfying the following conditions. Let S be a �nite

3

The classical example exhibiting non-termination for these approaches is the \reverse with accumulating

parameter" program (see for instance [14].

4

set of atoms; then abstract(S) is a �nite set of atoms A with the same predicates as those in S,

such that every atom in S is an instance of an atom in A.

Usually we want the abstract operation to be de�ned such as to ensure termination of the

following generic algorithm.

Algorithm 3.4

Let A be an independent set of atoms for which we want to generate a specialised version of

the program P . We suppose that we have an operation abstract(:) and a well-founded unfolding

rule U at our disposal.

1. Put k = 0 and S

0

=A.

2. Generate the partial deduction of S

k

in P using U .

3. Let S

k+1

= abstract(S

k

[L

k

) where L

k

are the atoms occurring in the bodies of the partial

deductions of step 2.

4. If S

k

= S

k+1

(modulo variable renaming) then continue with step 5.

Otherwise increment k and go to step 2.

5. Rename apart those atoms in S

k

(and the atoms covered

4

by S

k

in the bodies of the partial

deductions) which have common instances with each other. Add a renaming de�nition for

the renamed atoms in A.

The following proposition is a consequence of the fundamental partial deduction theorem 2.3

and of the correctness of the renaming transformation (see for instance [5{7] and [1] for some

correct renaming transformations).

Proposition 3.5 (correctness)

If algorithm 3.4 terminates then, for any goal G which is A-closed, the specialised program P

0

obtained by replacing the set of clauses in P whose head contains one of the predicate symbols

appearing in A

k

by the partial deduction of A

k

in P using U is correct with respect to G in

the following way:

1. P

0

[f Gg has an SLDNF-refutation with computed answer � i� P [f Gg does.

2. P

0

[f Gg has a �nitely failed SLDNF tree i� P [f Gg does.

In algorithm 3.4 and in the remainder of this paper we consider each predicate to be selectable

in the partial deduction process. The above algorithm (and our technique in general) can easily

be extended to account for un-selectable predicates (like for instance open-predicates for which

we have no de�nition yet).

4

If an atom in a body is covered by more than one atom in S

k

then there is no unique choice of a covering

atom. But the actual choice does not matter from a theoretical point of view (although it is usually a good idea

to try to choose the most speci�c covering atom in S

k

).

5

4 Abstraction Using Characteristic Trees

In this section we present a �rst attempt at de�ning a sensible abstraction operator for partial

deduction and show its shortcomings. First though we need the following two de�nitions which

are adapted from [4]. We adopt the convention in this paper that any derivation is potentially

incomplete (a derivation can thus be failed, incomplete, successful or in�nite).

De�nition 4.1 (characteristic path)

Let G

1

be a goal and let P be a normal program whose clauses are numbered. Let G

1

; : : : ; G

n

be an SLDNF derivation of P [fG

1

g. The characteristic path of the derivation is the sequence

(l

1

; c

1

); : : : ; (l

n�1

; c

n�1

), where l

i

is the position of the selected literal in G

i

, and c

i

is de�ned

as:

� if the selected literal is an atom, then c

i

is the number of the clause chosen to resolve

with G

i

.

� if the selected literal is :p(

�

t), then c

i

is the predicate p.

The set of all characteristic paths for a given program P and a given goal G will be denoted by

chpaths(P;G). Note that if two non-failing derivations for two goals with the same number of

literals (and for the same program P) have the same characteristic path then they are either

both successful or both incomplete. This justi�es the fact that the leaves of derivations are not

registered in characteristic paths.

De�nition 4.2 (characteristic tree)

Let G be a goal and P a normal program. Let U be an unfolding rule. Then the characteristic

tree � of G (in P) via U is the set of characteristic paths of the non-failing derivations of

the incomplete SLDNF tree obtained by applying U to G (in P). We introduce the notation

chtree(G;P; U) = � . We also say that � is a characteristic tree if it is the characteristic tree for

some G, P and U . A characteristic tree � is determinate if it is the characteristic tree for some

G, P and some determinate unfolding rule U .

Based on the idea of characteristic trees, Gallagher and Bruynooghe have developed ab-

straction operators in [7] and [4]. The basic idea is to generalise atoms, all having the same

characteristic tree (or some similarly de�ned concept for [7]), by another atom, hopefully having

the same characteristic tree. If this can be achieved, then we obtain an almost perfect abstraction

operator, in the sense that due to the abstraction we have lost nothing wrt to the pruning and

unfolding work done at partial deduction for the initial set of atoms. In that case the charac-

teristic trees also play the role of controlling polyvariance

5

: for a set of (potentially dependent)

atoms we will generate as many di�erent versions as there are distinct characteristic trees.

The authors of article [7] actually claim in lemma 4.11 to have found an operator (namely

chcall) which preserves a structure quite similar to the characteristic tree (of de�nition 4.2

above) in the case of de�nite programs. Unfortunately this lemma 4.11 is false (example 4.4

below can be used to show this, the details are presented in appendix B) and cannot be easily

recti�ed.

A similar problem holds for the more general (i.e. not restricted to de�nite programs) ab-

straction operator of [4] (note however that no claim of the preservation of characteristic trees

is made in [4]). In fact there are three problems with the abstraction operator as de�ned in [4]:

5

Controlling when and how di�erent versions for atoms with the same predicate should be generated.

6

1. It is not guaranteed to generate more general atoms (sometimes it even generates more

speci�c atoms) causing potential problems for termination of the
ow analysis of [4].

2. It can change the characteristic tree because of additional matching clauses.

3. It can change the characteristic tree because groundness and �nite failure of negated literals

can be modi�ed.

Apart from reducing the precision of the approach, points 2 and 3 cause further problems

for the termination proof of the
ow analysis of [4] and therefore raise worries about the overall

usefulness of characteristic trees. We will however see in the rest of our paper that the �rst two

problems can be solved by incorporating a simple form of constraint into the partial deduction

procedure yielding perfect precision wrt the characteristic trees. We will discuss the third

problem (and sketch a solution) in section 8.

In the following three examples we will use the determinate unfolding rule of [4] (which in

example 4.4 behaves slightly di�erently than de�nition 3.2). We take an example from [4] to

illustrate the �rst problem.

Example 4.3

Take the following program P :

(1) Eqlist([]; [])

(2) Eqlist([X jXs]; [XjYs]) Eqlist(Xs; Y s)

Let A be Eqlist([1; 2];W) and let B be Eqlist(W; [3; 4]). Then A and B have the same

characteristic tree f((1,2),(1,2),(1,1))g. It is however impossible to �nd an atomic goal C more

general than A and B having the same characteristic tree. For instance the msg(fA;Bg) =

Eqlist(X; Y) has a di�erent characteristic tree: f((1,1)),((1,2))g. The reason being (as pointed

out in [4]) that di�erent arguments independently force the same choice during a derivation. The

compromise proposed in [4] is to abstract A and B by Eqlist([X; Y]; [X; Y]) which is however

not more general than either A or B. This can cause potential problems for the termination

6

of

the
ow analysis in [4]).

The following example illustrates the second problem of [4], which implies that characteristic

trees are not preserved in general by the method in [4].

Example 4.4

Let P be the following program (the actual de�nitions of r(X) and s(X) do not matter):

(1) p(X) q(X)

(2) p(c)

(3) q(X) r(X)

(4) q(X) s(X)

(5) r(X) : : :

(6) s(X) : : :

6

Although we don't believe that a non-terminating example can actually be constructed for [4] | but �nding

a termination proof is probably a non-trivial task.

7

For this program the goals p(a) and p(b) have the same characteristic tree

7

f((1,1))g. The

\abstract" operation of [4] (and in a similar way [7]) produces p(X) as generalisation. This

goal has a di�erent characteristic tree f((1,1)),((1,2))g because it additionally matches the clause

(2). Again there is no way to create a more general atom while still preserving the characteristic

tree in the \standard" setting. .

We now illustrate the third problem of [4], which appears when negative literals are selected

([7] is restricted to SLD, so the problem does not appear there).

Example 4.5

Let us examine the following program P :

(1) p(X) not(q(X))

(2) q(f(X)) q(X)

For this program the goals p(a) and p(b) have the same characteristic tree f((1,1),(1,q))g.

The abstraction operator of [4] will produce p(X) as a generalisation which has the charac-

teristic tree f((1,1))g. The problem is that the generalisation can abstract subterms inside a

selected negative literal by a variable. The generalisation of the negative literal is thus no longer

selectable by SLDNF. Solving this problem requires a more complicated form of constraint which

will be sketched in section 8.

Note that a characteristic tree does not incorporate the failing branches of the underlying

SLDNF tree. This poses no problem for purely determinate unfolding (as de�ned in de�ni-

tion 3.2). In fact if there is a failing branch then the goal fails completely and as we will see

in section 7, such goals do not have to be abstracted. However the failing branches causes a

further problem for [4] (in which the unfolding rule employs a \lookahead" and a slightly dif-

ferent de�nition of \determinacy") because generalisation can transform \dead" resolvents into

\live" ones. The characteristic tree can thus be changed in still another way.

8

In the remainder

of this presentation we will thus restrict ourselves to purely determinate unfolding as de�ned in

de�nition 3.2. In section 8 we will discuss how this restriction can be lifted.

5 Negative Constraints

In this section we present the constraints which we will use in our partial deduction method

to guarantee the preservation of characteristic trees in the de�nite case. As we have seen in

the previous section an abstraction operator like the msg will change the characteristic tree of

a given set of atoms because the generated abstraction might match additional clauses. The

constraints presented in this section will be used to prune such additional clause matches.

De�nition 5.1 (negative binding)

A negative binding is an expression T

1

6� T

2

where T

1

and T

2

are terms (or atoms).

Intuitively T

1

6� T

2

signi�es that T

1

should not unify with T

2

. A negative binding will be

used to make sure that a selected positive literal T

1

of a goal G = : : : ; T

1

; : : : does not

7

Using de�nition 3.2 we could also obtain f((1; 1); (1; 3)); ((1; 1); (1; 4))g. For the other atoms in this example

de�nition 3.2 produces the same results.

8

This was �rst pointed out by Bern Martens.

8

unify with the head T

2

of a clause T

2

 Body (which has been standardised apart). Also a

negative binding T

1

6� T

2

is standardised apart by standardising apart T

2

(i.e. by replacing all

the variables in T

2

by new fresh variables not used \anywhere else"). We also introduce the

notation dom(T

1

6� T

2

) = vars(T

1

). Note that in �rst order logic we could write T

1

6� T

2

as

:9(T

1

= T

0

2

) where T

0

2

is obtained from T

2

by standardising apart.

De�nition 5.2 (applying substitutions)

Applying a substitution � on negative bindings is de�ned by the rule: (G 6� H)� = G� 6� H

The rationale behind this de�nition is that H is always standardised apart before being used,

i.e. any variable that occurs in � will never occur inside the standardised apart version of H .

De�nition 5.3 (holds(T

1

6� T

2

))

A negative binding T

1

6� T

2

is satis�ed, denoted as holds(T

1

6� T

2

), i� fT

1

; T

0

2

g are not uni�able

where T

0

2

is obtained from T

2

by standardising the negative binding apart.

De�nition 5.4 (� sat T

1

6� T

2

)

A substitution � satis�es a negative binding n, written as � sat n, i� holds(n�).

9

Example 5.5

Take for instance n = p(X) 6� p(f(a)) and let � = fX=f(b)g. Then n� = p(f(b)) 6� p(f(a))

and � sat n because the set fp(f(b)); p(f(a))g is not uni�able. In a similar way we have that

fX=g(Y)g sat n. Also any substitution will satisfy the negative binding m = p(X; a) 6� p(Z; b).

In particular we have holds(m). In fact it can be easily proven that holds(n)) 8� : � sat n.

Relating the concept of negative bindings to example 4.4, the goals p(a) and p(b) could

be generalised by an expression of the form (p(X); X 6� c). Goals of the form p(X)� such

that � sat X 6� c are precisely the ones with the same characteristic tree as p(a) and p(b).

To be able to prune more than just one matching clause we need sets of negative bindings:

De�nition 5.6 (negative constraint)

A negative (binding) constraint is either the special symbol fail or a �nite set of negative bindings.

De�nition 5.7 (holds(c))

A negative constraint c is satis�ed, denoted as holds(c), i� c 6= fail and T

1

6� T

2

2 c)

holds(T

1

6� T

2

)

De�nition 5.8 (applying substitutions)

Applying a substitution � to the negative constraint fail yields fail. Applying a substitution �

to a negative constraint fn

1

; : : : ; n

k

g consists in applying � to each negative binding n

i

.

De�nition 5.9 (� sat c)

A substitution � satis�es a negative constraint c, written as � sat c, i� holds(c�).

We also introduce the notation sat(c) = f� j � sat cg. We say that a constraint is unsatis�able

i� sat(c) = � and satis�able i� sat(c) 6= �. Note that fail is unsatis�able. Furthermore two

constraints c

1

and c

2

are equivalent, written as c

1

� c

2

, i� sat(c

1

) = sat(c

2

)

9

Standardising apart the variables of T

2

in de�nition 5.3 ensures that something like � = fX=f(Z)g does not

satisfy fp(X) 6� p(Z)g (which should be unsatis�able).

9

Example 5.10

Take the constraints: c

1

= fp(X; a) 6� p(b; a)g, c

2

= fX 6� bg, c

3

= fp(X; a) 6� p(V; a)g and

c

4

= fp(X;X) 6� p(b; a)g. Then c

1

� c

2

, c

3

� fail and c

4

� � (i.e. c

4

imposes no constraints and

sat(c

4

) is the set of all substitutions).

6 Extending SLD and SLDNF with Negative Constraints

In this section we will extend SLD and SLDNF to allow goals to be annotated with negative

constraints as de�ned in the previous section. The extension will only be used during partial

deduction and the negative constraints will not be present in the specialised program.

Below, we frequently need to express that, given two atoms or terms A and B, there exists

a substitution � such that A = B�. We refer to this as A is matched by B, with matching

substitution � and denote it as match(A;B; �). This of course implies that A is an instance

of B. Also by mgu(S) we denote a function which returns an idempotent and relevant most

general uni�er of the set of atoms or terms S if S is uni�able. Otherwise mgu(S) returns fail.

The following lemma captures an important property of matching and can be used to decide

(using matching) the satis�ability of negative bindings.

Lemma 6.1

Let A;B be two terms or atoms such that vars(A)\ vars(B) = � and such that a functor f not

used inside A;B exists, then:

there exists a � such that match(A;B; �) i� for every substitution �

0

, such that �

0

has no variables

in common with B, we have mgu(fA�

0

; Bg) 6= fail.

Note that the if-part also holds if there is no functor f not used inside A;B.

Based on the above lemma we introduce a normalisation operator kck for constraints which

can be used to decide whether a given negative constraint c is satis�able or not.

De�nition 6.2 (kck)

Let c be a negative constraint and let c

0

be obtained from c by standardising apart all its negative

bindings. We de�ne the following procedure which calculates the solved form kck of c.

10

1. Remove any T

1

6� T

2

2 c

0

such that mgu(T

1

; T

2

) = fail.

2. If there exists a T

1

6� T

2

2 c

0

such that match(T

1

; T

2

; �) then let kck = fail.

Proposition 6.3

Let c be a negative constraint. Then kck is a negative constraint and c � kck.

Proposition 6.4

If c is a negative constraint and there exists some functor f not occurring inside c then

c is satis�able , kck 6= fail.

This means that satis�ability is a decidable concept if, for every constraint c under consid-

eration, we can always �nd some functor f not used in c. This is always the case if the set of

10

Note that there is in general no unique solved form.

10

functors is in�nite. Also note that it is quite easy to show that the above proposition 6.4 also

holds if the number of constants is in�nite (or if there is a su�cient number of constants not

occurring inside of c).

In the case that the number of functors and the number of constants cannot be assumed

to be \su�ciently" large for proposition 6.4 to hold we can still use the concepts introduced

in this section and the partial deduction method based on them. The only drawback is that

unsatis�ability of constraints might not be detected at the earliest possible moment. This just

adds unnecessary resultants to the specialised program, but poses no problems with respect to

the correctness of the specialised program.

Example 6.5

This example illustrates why we need to have some functor f (or a su�cient number of constants)

not occurring inside c in proposition 6.4. Take the constraint c = fp(X) 6� p(0); p(X) 6�

p(s(Z))g. We have that kck = c 6= fail , but c is nonetheless unsatis�able if the Herbrand

universe is just f0; s(0); s(s(0)); : : :g.

De�nition 6.6 (constrained atoms and goals)

A constrained atom (resp. constrained goal) is a couple consisting of an ordinary atom A (resp.

goal G) and a negative constraint c.

Abusing notation we will sometimes denote (A; �) by A. Intuitively the constraint c imposes

restrictions on the values the variables in A (resp. G) can take. A constrained atom (resp. goal)

can thus be seen as representing a (possibly in�nite) set of valid atoms (resp. goals). For instance,

given the Herbrand Universe U

P

= f0; s(0); s(s(0)); : : :g, the constrained atom (p(X); fp(X) 6�

0g) represents the set of atoms fp(s(X))� j � is any substitutiong. More generally:

De�nition 6.7 (valid instances)

Let (A; c) be a constrained atom (resp. goal). The set of valid instances of (A; c) is de�ned as

follows: valid((A; c)) = fA� j � sat cg

De�nition 6.8 (deriving constrained goals)

Let G be the ordinary goal A

1

; : : : ; A

m

; : : : ; A

n

and C be the renamed clause A B

1

; : : : ; B

q

.

Also let c be a negative constraint. Then the constrained goal (G

0

; c

0

) is derived from (G; c) and

C using mgu � if the following conditions hold:

� A

m

is an atom, called the selected atom, in G.

� � is an mgu of A

m

and A.

� G

0

is the goal (A

1

; : : : ; A

m�1

; B

1

; : : : ; B

q

; A

m+1

; : : : ; A

n

)�.

� c

0

= kc:�k 6= fail.

What we have de�ned is a CLP language with a particular constraint domain, namely the

set of negative constraints, and with a particular satis�ability operation, namely one based on

calculating the solved form kck (see [8] for a survey on constraint logic programming). Note

however that our constraints are never used to infer values of variables. This is a consequence of

the fact that a negative constraint is either unsatis�able or has an in�nite number of substitutions

satisfying it (assuming that some functor not used inside the constraint exists). In fact the

constraints are just used to prune the search tree whenever it is guaranteed that no valid instance

of the current goal exists.

11

Based on de�nition 6.8 we can de�ne the concepts of SLDC-derivations, SLDC-refutation

and SLDC-trees. Similarly we can easily extend SLDNF into SLDNFC to allow constraints

11

.

We can also extend the notions of partial deduction, unfolding rules and determinate unfolding

rules.

De�nition 6.9 (instance)

A constrained goal (resp. atom) (G; c) is an instance of another constrained goal (resp. atom)

(G

0

; c

0

), denoted by (G; c)� (G

0

; c

0

), i� valid((G; c))� valid((G

0

; c

0

)).

Example 6.10

Suppose we have a constrained goal C = (p(X); fp(X) 6� p(f(g(Z)))g).

Then the goals (p(a); �), (p(f(h(Y))); �) and (p(f(V)); fp(f(V)) 6� p(f(g(Z)))g) are

instances of C, while the goals (p(f(V)); �) and (p(f(g(W))); �) are not. Also it is always

true that (G; c)� (G; �), or more generally (G; c[c

0

) � (G; c).

7 Preserving Characteristic Trees

We can easily adapt de�nition 4.1 and de�nition 4.2, of characteristic paths and trees respec-

tively, by just replacing SLDNF by SLDNFC. Note that the set of characteristic paths for a

normal goal G under SLDNF is identical to the set of characteristic paths for the constrained

goal (G; �) under SLDNFC. For simplicity of the presentation we will restrict ourselves to SLDC

and to determinate unfolding rules. In the discussion we will sketch a way to lift this restriction.

We showed in examples 4.3 and 4.4 that without constraints it is impossible to generalise

atoms while still preserving their characteristic trees. Let us revisit examples 4.4 and 4.3 and

see how we can achieve preservation of characteristic trees using constraints.

Example 7.1

We can abstract the goals p(a) and p(b) of example 4.4 by the (more general) constrained

goal (p(X); c

0

) with c

0

= fp(X) 6� p(c)g having the same characteristic tree � = f((1; 1))g.

Note that the substitution fX=cg makes c

0

unsatis�able and thereby the additional match with

clause (2) is pruned.

Example 7.2

Again let A be Eqlist([1; 2];W) and let B be Eqlist(W; [3; 4]) who both have the charac-

teristic tree f((1; 2); (1; 2); (1; 1))g. We can calculate the msg of A and B and choose constraints

in such a way as to obtain the same characteristic tree. For this example we would get the

abstraction (Eqlist(X; Y); fc

1

; c

2

; c

3

g) with

c

1

= Eqlist(X; Y) 6� Eqlist([]; []), c

2

= Eqlist(X; Y) 6� Eqlist([X

0

]; [Y

0

]),

c

3

= Eqlist(X; Y) 6� Eqlist([X

0

; X

00

;

~

Xj

~

Xs]; [Y

0

; Y

00

;

~

Y j

~

Y s]).

Note that fA;Bg � valid((Eqlist(X; Y); fc

1

; c

2

; c

3

g)). The constraints are constructed in

such a way as to prune any extra branches in the characteristic tree. Figure 1 illustrates how

this can be done: the constraints are chosen in such a way as to prune all the dotted resolution

steps. For instance the constraint c

1

prunes the left-most dotted resolution step. The details

of the calculation will be presented later in this section. We can now construct a specialised

program for the constrained goal (Eqlist(X; Y); fc

1

; c

2

; c

3

g), which covers both the call A

and the call B (the clause (3) below replaces clauses (1) and (2) of example 4.3):

11

Note that constraints do not have to be propagated for negative literals because negative literals have to be

ground before they get executed.

12

(3) Eqlist([V;W]; [V;W])

This e�ectively solves one of the (potential) termination problems of [4], because we can always

generate atoms which are more general and have the same characteristic tree. We will also show

later that the constraints do not introduce a termination problem of their own.

S

S

S

Sw

�

�

�

�/

/

.

.

.

.

.

.

.

.

.

.

.

w

.

.

.

.

.

.

.

.

.

.

.

fXs

0

=[]; Y s

0

=[]g fXs

0

=[X

00

jXs

00

]; Y s

0

=[Y

00

jY s

00

]g

fXs

00

=[]; Y s

00

=[]g fXs

00

=[

~

Xj

~

Xs]; Y s

00

=[

~

Y j

~

Y s]g

2 Eqlist(Xs

00

; Y s

00

)

2 Eqlist(

~

Xs;

~

Y s)

S

S

S

Sw
/

.

.

.

.

.

.

.

.

.

.

.

 Eqlist(X;Y)

fX=[]; Y=[]g fX=[X

0

jXs

0

]; Y=[Y

0

jY s

0

]g

2 Eqlist(Xs

0

; Y s

0

)

Figure 1: Calculating pruning constraints for example 7.2

De�nition 7.3 (admissible)

Let � be a characteristic tree. We say that � is admissible for a constrained goal G (and for a

program P) i� � � chpaths(P;G).

Note that � is admissible for G does not necessarily imply that � is the characteristic tree

for G via some U . However it signi�es that � can be obtained by pruning branches of some

characteristic tree for G via some U . This is exactly what we will try to do below in de�nition 7.5

through the calculation of pruning constraints.

Proposition 7.4

Let the constrained goal (G; c) be an instance of (G

0

; c

0

) and let G be an instance of G

0

.

If � is a characteristic tree admissible for (G; c) which involves no negative selected literals then

� is also admissible for (G

0

; c

0

).

De�nition 7.5 (pruning constraint)

Let � be a non-empty determinate characteristic tree admissible for the constrained goal (

A; �). Then we de�ne the pruning constraint prune(A; �) in the following way:

prune(A; �) = fA 6� A� j 9p 2 chpaths(P; (A; �)) with p 62 � such that p = p

0

(l

n

; c

n

) and

p

0

p

00

2 � where p

0

; p

00

are possibly empty, H is the head of the clause numbered with c

n

, L is

the selected literal at position l

n

used in the last resolution of p and � is the composition of the

mgu's of the derivation associated with p (including the last step (l

n

; c

n

))g.

Note that the above de�nition does not apply to empty characteristic trees. Indeed it is in

general not possible, by just using conjunctions of negative bindings

12

, to construct pruning

12

It might be possible using disjunctions of negative bindings or maybe the constraints of the form not

P

(A)

sketched in section 8, but the authors have not yet investigated this.

13

constraints valid for empty characteristic trees which at the same time satisfy propositions 7.6

and 7.7. Note however that atoms with empty characteristic trees do not pose any problem for

termination of algorithm 3.4 because their partial deductions are empty and no atoms in the

bodies have to be added to the set of atoms to be partially deduced. An abstraction operator

can thus leave atoms with empty characteristic trees untouched.

The constraints for Eqlist(X; Y) in example 7.2 and �gure 1 were calculated by the above

method. The next proposition establishes the correctness of this method.

Proposition 7.6 (Preservation of characteristic trees)

Let U be a determinate unfolding rule, let � be the characteristic tree for some instance

13

of

(A; �) via U and let � be non-empty and admissible for (A; �) then:

� is the characteristic tree of (A; prune(A; �)) for some determinate unfolding rule U

0

.

Note that, in the above proposition, we cannot conclude that � is the characteristic tree

of (A; prune(A; �)) for U because nothing prevents U from treating that goal completely

di�erently (i.e. selecting di�erent atoms) from the goal (A; c). To avoid this kind of arbi-

trary behaviour we need a feature of \stability" of the unfolding rule. For instance a determi-

nate unfolding rule U with a static (e.g. left-to-right) selection of the determinate atoms will

not arbitrarily change the unfolding behaviour and in that case we are able to conclude that

chtree((A; prune(A; �)); P; U) = � . Also note that in the case that an unfolding rule does

not exhibit this kind of \stability" we can still use the pruning constraints of de�nition 7.5 and

simply impose � as the characteristic tree of the generalisation. In both cases this has the added

bene�t that unfolding does not have to be re-done for the generalised atom because the resulting

characteristic tree is already known.

Proposition 7.7

Let � be the non-empty determinate characteristic tree of (A�; c) for a determinate unfolding

rule U and let � be admissible for (A; �) then (A�; c) is an instance of (A; prune(A; �)).

This implies that any constrained atom more general than (A; prune(A; �)) has either a

di�erent characteristic tree or has a more general ordinary goal component. Note that the

proposition does not hold for unfolding rules which are not determinate (the problem is due

to failing branches, which are not represented in the characteristic tree). The proposition also

implies that it can be quickly determined through characteristic trees whether something is surely

an instance of a constrained atom (A; prune(A; �)). This leads to the following de�nition:

De�nition 7.8 (cover)

Let P be a program, U a determinate unfolding rule, � a characteristic tree admissible for

(A; �) and let (A; c) be a constrained atom where c � prune(A; �). We then de�ne:

cover((A; c)) = f(A�; c

0

) j chtree((A�; c

0

); P; U) = �g.

Under the conditions of proposition 7.6, this relation is a decidable and sound approximation

(i.e. subset) of the set of constrained atoms fA

0

j A

0

� (A; c)g and will be used in our partial

deduction algorithm to test whether atoms occurring in the bodies of partial deductions are

covered or not.

We are now in a position to formally de�ne our abstraction operator. This abstraction

operator is only de�ned if no negative literals are selected during partial deduction. In the next

section we will discuss how this restriction can be lifted.

13

A small example, showing the importance of this requirement, can be found in appendix D.

14

De�nition 7.9 (abstract)

Let P be a program, U a determinate and well-founded unfolding rule and let S be a set of

constrained atoms. Then our abstraction operator is de�ned as follows:

abstract(S) = f(A; prune(A; �)) j A = msg(A

�

) for some � 6= �g [S

�

where

A

�

= fA j 9(A; c) 2 S with chtree((A; c); P; U) = �g and

S

�

= f(A; c) j (A; c) 2 S and chtree((A; c); P; U) = �g.

We can now de�ne a variant (for SLDC instead of SLD) of algorithm 3.4 by using the

abstract operation of de�nition 7.9 and by testing closedness (required for step 5 of algorithm 3.4)

using the cover relation of de�nition 7.8 (which is applicable because any element of the set

S

k

with a non-empty characteristic tree will be of the form (A; prune(A; �))). Note that the

specialised program, obtained by taking resultants and by renaming, is a SLD program without

constraints. The constraint manipulation has already been incorporated by pruning branches

and the closedness guarantees that no additional constraint processing is needed

14

.

Proposition 7.10

If the set of di�erent characteristic trees is �nite then the abstract operation of de�nition 7.9

guarantees that (an adaption of) algorithm 3.4 terminates.

To make the previous proposition applicable we can simply enforce a depth bound on the un-

folding rule used during partial deduction. Note that when performing determinate unfolding a

depth bound is much less likely to have an (ad-hoc) e�ect. Also by using a depth bound we guar-

antee the well-foundedness of the unfolding rule. It is however also possible not to impose any

(ad-hoc) depth-bound on the unfolding rule and to just change the de�nition of characteristic

paths and trees such that it incorporates a depth bound.

The following simple example shows the kind of optimisations that are possible with our

method.

15

Example 7.11

(1) rev(X; none;X)

(2) rev([]; Acc;Acc)

(3) rev([X jT];Acc;Res) rev(T; [XjAcc];Res)

For the query rev(L; []; R) and using determinate unfolding our method will generate the

following sequence of atoms to be partially deduced (see algorithm 3.4):

S

0

= f(rev(L; [];R); �)g

S

1

= abstract(S

0

[f(rev(T; [X];R); �)g) = f(rev(L;A;R); frev(L;A;R) 6� rev(X; none;X)g)g

S

2

= abstract(S

1

[f(rev(T; [XjA];R); frev([XjT]; A;R) 6� rev(X; none;X)g)g) = S

1

All the atoms above have the characteristic tree � = f(1; 2); (1; 3)g. The following specialised

program is produced:

(1') rev([]; Acc; Acc)

(2') rev([X jT]; Acc; Res) rev(T; [X jAcc];Res)

14

Note though that it is always correct to use a predicate de�nition generated for p(X) for any call to a

constrained goal (p(X); c).

15

This example looks arti�cial, but it is not easy to come up with a small example exhibiting at the same time

non-termination problems and substantial loss of precision when using abstraction solely based on the msg.

15

If we treat the above example with a method based on dynamic renaming (see [1]) the set of

partially deduced atoms will grow in�nitely: frev(L; []; R); rev(L; [X];R); rev(L; [X;X

0

]; R); : : :g.

If we use a strategy without renaming, partial deduction (alone

16

) will not be able to remove the

clause (1) from the specialised program. If we use the static renaming strategy of [2] it is in this

case possible to remove the clause (1) while guaranteeing termination. But we obtain a larger

program (because of unnecessary polyvariance due to the static guidance) and if we replace

clause (1) by for instance \rev(X; [Y jnone]; X) " the strategy will no longer be able to remove

clause (1) (unless the static renaming generates 3 versions of the predicate rev, for which we can

again �nd another example which requires 4 versions,: : :). Similarly the abstraction operators

in [4,7] cannot adequately handle the above example (or slight variations thereof). For instance

the chcall operator of [7] modi�es the characteristic tree: chcall(rev(L; [];R)) =rev(L;A;R).

The generalised atom now additionally matches clause (1).

8 Extending the Method

The abstraction operator we have presented in the previous section is only guaranteed to preserve

the characteristic trees if the msg replaces no subterm inside a selected negative literal by a

variable. For instance in example 4.5 the selected negative literals :q(a) and :q(b) get abstracted

by :q(X) thereby making it impossible to preserve the characteristic trees for the goals p(a)

and p(b).

We can solve this problem by adding a basic constraint of the form not

P

(A) where A is an

(ordinary) atom. We would then say that not

P

(A) is satis�ed, written as holds(not

P

(A)), i�

the atom A is ground and P [f Ag has a �nitely failed SLDNF tree.

The satis�ability of these constraints is no longer decidable. This means that we have to

use a safe-approximation of satis�ability. We also have to extend SLDNFC such that, when a

negative literal gets selected, it has to be checked whether a given negation constraint implies

�nite failure of the negated atom. Further modi�cations are also needed ot link variables of a

constraint of the form not

P

(A) to variables in the top-level goal.

The solution for example 4.5 would then be to abstract p(a) and p(b) by the constrained

goal (p(X); fnot

P

(q(X))g). The characteristic tree of this constrained goal would indeed be

f((1; 1); (1; q))g and the following optimal specialisation, valid for the goals p(a) and p(b),

gets constructed:

(3) p(X)

The method presented in the previous chapter was restricted to determinate unfolding rules.

If we move to non-determinate unfolding rules we have a complication due to the appearance of

failing branches. When generalising, these failing branches might become non-failing and make

the pruning constraints method not directly applicable (the method will generate unsatis�able

constraints). A solution might be to incorporate failing branches into the characteristic tree

structure and to use exactly the same de�nition of pruning constraints. But this is not fully

satisfactory wrt the control of polyvariance | di�erent versions of the same predicate, with

just a di�erent failing behaviour, might get generated. In ongoing work we attempt to use a

disjunction of negation and negative constraints to solve this problem.

16

An abstract interpretation phase could detect that clause (1) will never get used in this case, it may not work

in general (for instance if we want to specialise the above program for the query rev(L; [];R); rev(X;Y; Z)).

16

9 Discussion and Conclusion

Note that our concepts of negative bindings and negative constraints are somewhat related

to the concepts of sets of term inequalities in [13]. However, the constraints in [13] are used

to specify an in�nite set of substitutions. Another similar kind of constraints has been used

in [11] to de�ne a generalisation operator for machine learning which respects a set of counter

examples. Our constraint programming language also resembles the CLP(FT) language with

dif constraints in [17, 18]. An adaptation of our technique might yield a useful abstraction

operator for CLP(FT).

In conclusion, we have presented an almost perfect abstraction operator for partial deduc-

tion. The operator ensures termination and correctness (through the closedness and indepen-

dence conditions of [12]) of the partial deduction while preserving (almost) all of the pruning

and unfolding performed on the initial set of atoms. The abstraction operator also provides

(almost) perfect control of polyvariance, in the sense that di�erent specialised versions for calls

are only constructed when this is reasonable, i.e. only when the atoms involved have di�erent

characteristic trees.

Acknowledgements

Michael Leuschel is supported by Esprit BR-project Compulog II. Danny De Schreye is senior

research associate of the Belgian National Fund for Scienti�c Research. We would like to thank

Bern Martens for proof-reading (several versions) of this paper, for his subtle comments and

for the stimulating discussions. His relevant remarks signi�cantly helped to shape this report,

eliminate errors and make it more readable. We would also like to thank John Gallagher for his

helpful remarks.

References

[1] K. Benkerimi and P. M. Hill. Supporting transformations for the partial evaluation of logic

programs. Journal of Logic and Computation, 3(5):469{486, October 1993.

[2] K. Benkerimi and J. W. Lloyd. A partial evaluation procedure for logic programs. In

S. Debray and M. Hermenegildo, editors, Proceedings of the North American Conference

on Logic Programming, pages 343{358. MIT Press, 1990.

[3] M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding in�nite

unfolding during partial deduction. New Generation Computing, 11(1):47{79, 1992.

[4] J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32, Uni-

versity of Bristol, November 1991.

[5] J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of PEPM'93, the

ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Manipula-

tion, pages 88{98. ACM Press, 1993.

[6] J. Gallagher and M. Bruynooghe. Some low-level transformations for logic programs. In

M. Bruynooghe, editor, Proceedings of Meta90 Workshop on Meta Programming in Logic,

pages 229{244, Leuven, Belgium, 1990.

17

[7] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program specialisation.

New Generation Computing, 9(3 & 4):305{333, 1991.

[8] J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. The Journal of Logic

Programming, 19 & 20:503{581, 1994.

[9] J. Komorowksi. A Speci�cation of an Abstract Prolog Machine and its Application to Partial

Evaluation. PhD thesis, Link�oping University, Sweden, 1981. Link�oping Studies in Science

and Technology Dissertations 69.

[10] J.-L. Lassez, M. Maher, and K. Marriott. Uni�cation revisited. In J. Minker, editor, Foun-

dations of Deductive Databases and Logic Programming, pages 587{625. Morgan-Kaufmann,

1988.

[11] J.-L. Lassez and K. Marriott. Explicit representation of terms de�ned by counter examples.

Journal of Automated Reasoning, 3:301{317, 1987.

[12] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The Journal

of Logic Programming, 11:217{242, 1991.

[13] J. Ma luszy�nski and T. N�aslund. Fail substitutions for negation as failure. In E. L. Lusk

and R. A. Overbeek, editors, Logic Programming: Proceedings of the North American Con-

ference, 1989, pages 461{476. MIT Press, 1989.

[14] B. Martens. On the Semantics of Meta-Programming and the Control of Partial Deduction

in Logic Programming. PhD thesis, K.U. Leuven, February 1994.

[15] B. Martens, D. De Schreye, and T. Horv�ath. Sound and complete partial deduction with

unfolding based on well-founded measures. Theoretical Computer Science, 122(1{2):97{117,

1994.

[16] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while allow-

ing
exible polyvariance. Technical Report CSTR-94-16, Computer Science Department,

University of Bristol, 1994.

[17] D. A. Smith. Partial evaluation of pattern matching in constraint logic programming lan-

guages. In N. D. Jones and P. Hudak, editors, ACM Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, pages 62{71. ACM Press Sigplan Notices 26(9),

1991.

[18] D. A. Smith and T. Hickey. Partial evaluation of a CLP language. In S. Debray and

M. Hermenegildo, editors, Proceedings of the North American Conference on Logic Pro-

gramming, pages 119{138. MIT Press, 1990.

A Small Renaming Example

Let A=fq(X); p(a;X); p(X;a)g and take the following program P :

q(X) p(a;X)

q(f(X)) p(X; a)

p(a;X)

18

We could have the following (not very sophisticated) partial deduction of A in P (the �rst row

contains the atoms to be partially deduced, the second row contains their respective partial

deductions):

q(X) p(a;X) p(X; a)

q(X) p(a;X) p(a;X) p(a; a)

q(f(X)) p(X; a)

We can see that the partial deduction of P wrt A has an SLDNF-refutation with computed

answer fX=ag for the query q(X) whereas the original program does not have such an

SLDNF-refutation. This is due to the fact that A is not independent (note that P [f q(X)g

is A-closed). Now suppose we want our specialised program to be correct for all goals which

contain instances of the independent subset A

0

= fq(X); p(a; Y)g of A. In that case we can

rename all predicates in AnA

0

. In this case we would rename p(Z; a) to p

0

(Z; a) for instance,

yielding the following specialised (and correct) program P

0

:

q(X) p(a;X)

q(f(X)) p

0

(X; a)

p(a;X)

p

0

(a; a)

Note that P

0

does not have an (incorrect) SLDNF-refutation with computed answer fX=ag for

the query q(X).

B Counter Example

In this appendix we present a counter example to lemma 4.11 on page 326 of [7]. Note that the

de�nitions di�er from the ones in [4] and from the ones adopted in our paper (for instance what

is called a chpath in [7] corresponds more closely to the concept of a characteristic tree in our

paper than to the notion of a characteristic path).

We take the program P from example 4.4 (the actual de�nitions of r(X) and s(X) are of no

importance):

(c

1

) p(X) q(X)

(c

2

) p(c)

(c

3

) q(X) r(X)

(c

4

) q(X) s(X)

(c

5

) r(X) : : :

(c

6

) s(X) : : :

Now let the atom A be p(b). Then according to de�nition 4.5 of [7] we have that chpath(A) =

(hc

1

i; fc

3

; c

4

g). According to de�nition 4.10 we obtain: chpaths(A) = fhc

1

; c

3

i; hc

1

; c

4

ig.

The most general resultants (de�nition 4.6 of [7]) of the paths in chpaths(A) is the set

fp(Z) r(Z); p(Z) s(Z)g.

By de�nition 4.10 of [7] we obtain the characteristic call of A:

chcall(A) = msgfp(Z); p(Z)g= p(Z).

19

In lemma 4.11 of [7] it is claimed that chpath(chcall(A)) = chpath(A) and that

chpath(msgfA; chcall(A)g) = chpath(A), i.e. it is claimed that chpath(msgfA; chcall(A)g) \ab-

stracts" A (�nds a more general atom) while preserving the characteristic path structure. How-

ever in our example we have that:

chpath(chcall(A)) = chpath(msgfA; chcall(A)g) = chpath(p(Z)) = (hi; fc

1

; c

2

g) 6= chpath(A)

and thus lemma 4.11 is false.

C Specialisation Example

Let the original program P to be specialised be:

(1) rev(X; none;X)

(2) rev([]; Acc;Acc)

(3) rev([X jT];Acc;Res) rev(T; [XjAcc];Res)

Let us follow step by step the execution of algorithm 3.4 for the query rev(L; []; R):

S

0

= f(rev(L; [];R); �)g

�

�

�

�

�

�

�=

Z

Z

Z

Z

Z

Z

Z~

(rev(L; [];R); �)

(2; �) (rev(T; [X];R); �)

(2) (3)

The characteristic tree for (rev(L; []; R); �) is f(1; 2); (1; 3)g and the partial deduction is:

rev([]; []; []); (under the constraint �)

rev([X jT]; []; R) rev(T; [X];R) (under the constraint �)

The constrained atoms occurring in the bodies of the partial deductions are thus

L

0

= f(rev(T; [X];R); �)g

The constrained goal (rev(T; [X]; R); �) has the same characteristic tree � = f(1; 2); (1; 3)g

as (rev(L; []; R); �). We thus calculate: msg(frev(L; [];R); rev(T; [X];R)g) = rev(L;A;R)

and by calculating the pruning constraints prune(rev(L;A;R); �) we obtain:

S

1

= abstract(S

0

[f(rev(T; [X]; R); �)g) =

= f(rev(L;A;R); frev(L;A;R) 6� rev(X; none;X)g)g

�

�

�

�

�

�

�=

Z

Z

Z

Z

Z

Z

Z~

(rev(L;A;R); frev(L;A;R) 6� rev(X;none;X)g)

(2; frev([];A; A) 6� rev(X;none; X)g)

(rev(T; [X jA];R);frev([X jT];A;R) 6� rev(X;none; X)g)g)

(2) (3)

20

The characteristic tree of (rev(L;A;R); frev(L;A;R) 6� rev(X; none;X)g) is still

f(1; 2); (1; 3)g and the partial deduction is:

rev([]; A; A) (under the constraint frev([]; A;A) 6� rev(X;none;X)g � �)

rev([X jT];A;R) rev(T; [XjA];R) (under the constraintfrev([XjT]; A;R) 6� rev(X;none;X)g)g)

The atoms occurring in the bodies of the partial deductions are thus:

L

1

= f(rev(T; [XjA]; R); frev([XjT];A; R) 6� rev(X; none;X)g)g

The constrained goal (rev(T; [X jA];R); frev([X jT];A;R) 6� rev(X; none;X)g) also has the

characteristic tree f(1; 2); (1; 3)g and is an instance of

(rev(L;A;R); frev(L;A;R) 6� rev(X; none;X)g) (by proposition 7.7). We have thus reached

the �xpoint in our algorithm:

S

2

= abstract(S

1

[f(rev(T; [XjA];R); frev([X jT];A;R) 6� rev(X; none;X)g)g) = S

1

The following specialised program is produced, which is (amongst others) correct for all atomic

goals which are valid instances of (rev(L;A;R); frev(L;A;R) 6� rev(X; none;X)g), e.g. it is

correct for rev(L; []; R):

(1') rev([]; Acc; Acc)

(2') rev([X jT]; Acc; Res) rev(T; [X jAcc];Res)

D Example for Proposition 7.6

This example shows the importance of the requirement that \� is the characteristic tree for some

instance of (A; �)" in proposition 7.6. Let P be the following program:

(1) p(X) q(Z)

(2) q(a)

(3) q(b)

Although the characteristic tree � = f((1; 1); (1; 2))g is admissible for the goal (p(X); �)

there exists no instance G of (p(X); �) such that � is a characteristic tree of G and indeed

there exists no constraint c such that � is the characteristic tree of (p(X); c). In particular

prune(p(X); �) will yield the unsatis�able constraint fp(X) 6� p(X)g. The problem is caused

by the \existential" variable Z in clause (1) on which we can place no constraint. Note however

that this is not a problem for our method because, by construction, � of proposition 7.6 will

always be a characteristic tree of some more instantiated goal.

21

